Invariance of visual operations at the level of receptive fields.

The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Tony Lindeberg
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/705a41d921d04ebaaf5d653b1b3706f5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:705a41d921d04ebaaf5d653b1b3706f5
record_format dspace
spelling oai:doaj.org-article:705a41d921d04ebaaf5d653b1b3706f52021-11-18T09:03:51ZInvariance of visual operations at the level of receptive fields.1932-620310.1371/journal.pone.0066990https://doaj.org/article/705a41d921d04ebaaf5d653b1b3706f52013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23894283/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment.Tony LindebergPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 7, p e66990 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tony Lindeberg
Invariance of visual operations at the level of receptive fields.
description The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment.
format article
author Tony Lindeberg
author_facet Tony Lindeberg
author_sort Tony Lindeberg
title Invariance of visual operations at the level of receptive fields.
title_short Invariance of visual operations at the level of receptive fields.
title_full Invariance of visual operations at the level of receptive fields.
title_fullStr Invariance of visual operations at the level of receptive fields.
title_full_unstemmed Invariance of visual operations at the level of receptive fields.
title_sort invariance of visual operations at the level of receptive fields.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/705a41d921d04ebaaf5d653b1b3706f5
work_keys_str_mv AT tonylindeberg invarianceofvisualoperationsatthelevelofreceptivefields
_version_ 1718420969460072448