A highly selective biosensor with nanomolar sensitivity based on cytokinin dehydrogenase.

We have developed a N6-dimethylallyladenine (cytokinin) dehydrogenase-based microbiosensor for real-time determination of the family of hormones known as cytokinins. Cytokinin dehydrogenase from Zea mays (ZmCKX1) was immobilised concurrently with electrodeposition of a silica gel film on the surface...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Faming Tian, Marta Greplová, Ivo Frébort, Nicholas Dale, Richard Napier
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/706fdac6606d4fa8a841e3921766d00f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We have developed a N6-dimethylallyladenine (cytokinin) dehydrogenase-based microbiosensor for real-time determination of the family of hormones known as cytokinins. Cytokinin dehydrogenase from Zea mays (ZmCKX1) was immobilised concurrently with electrodeposition of a silica gel film on the surface of a Pt microelectrode, which was further functionalized by free electron mediator 2,6-dichlorophenolindophenol (DCPIP) in supporting electrolyte to give a bioactive film capable of selective oxidative cleavage of the N6- side chain of cytokinins. The rapid electron shuffling between freely diffusible DCPIP and the FAD redox group in ZmCKX1 endowed the microbiosensor with a fast response time of less than 10 s. The immobilised ZmCKX1 retained a high affinity for its preferred substrate N6-(Δ2-isopentenyl) adenine (iP), and gave the miniaturized biosensor a large linear dynamic range from 10 nM to 10 µM, a detection limit of 3.9 nM and a high sensitivity to iP of 603.3 µAmM-1cm-2 (n = 4, R2 = 0.9999). Excellent selectivity was displayed for several other aliphatic cytokinins and their ribosides, including N6-(Δ2-isopentenyl) adenine, N6-(Δ2-isopentenyl) adenosine, cis-zeatin, trans-zeatin and trans-zeatin riboside. Aromatic cytokinins and metabolites such as cytokinin glucosides were generally poor substrates. The microbiosensors exhibited excellent stability in terms of pH and long-term storage and have been used successfully to determine low nanomolar cytokinin concentrations in tomato xylem sap exudates.