Cascaded Integration of Optical Waveguides With Third-Order Nonlinearity With Lithium Niobate Waveguides on Silicon Substrates
The cascaded integration of optical waveguides with third-order optical nonlinearity (<inline-formula> <tex-math notation="LaTeX">$\chi ^{(3)}$</tex-math></inline-formula> susceptibilitiy) with lithium niobate (LiNbO <inline-formula><tex-math notation="...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/707bad3be1374561ada7e097faa37b82 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The cascaded integration of optical waveguides with third-order optical nonlinearity (<inline-formula> <tex-math notation="LaTeX">$\chi ^{(3)}$</tex-math></inline-formula> susceptibilitiy) with lithium niobate (LiNbO <inline-formula><tex-math notation="LaTeX">$_{3}$</tex-math></inline-formula>) waveguides is demonstrated on the same chip. Thin-film (LiNbO<inline-formula><tex-math notation="LaTeX">$_{3}$</tex-math></inline-formula>) and chalcogenide (ChG) glass (Ge<inline-formula><tex-math notation="LaTeX">$_{23}$</tex-math></inline-formula>Sb<inline-formula> <tex-math notation="LaTeX">$_{7}$</tex-math></inline-formula>S<inline-formula><tex-math notation="LaTeX">$_{70}$ </tex-math></inline-formula>) waveguides are integrated on silicon (Si) substrates. An optical mode transition between the two waveguides is achieved through low-loss mode-converting tapers, with a measured loss of <inline-formula> <tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>1.5 dB for transverse-electric and <inline-formula> <tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>1.75 dB for transverse-magnetic input polarizations. For nonlinear characterization, wavelength conversion via four-wave mixing is demonstrated on the ChG-LN waveguides. This platform provides an efficient method for the utilization of second- and third-order optical nonlinearities on the same chip, rendering it ideal for nonlinear applications such as stabilized octave-spanning optical frequency comb generation. |
---|