Neuronal variability reflects probabilistic inference tuned to natural image statistics
The neural sampling theory suggests that neuronal variability encodes the uncertainty of probabilistic inferences. This paper shows that response variability in primary visual cortex reflects the statistical structure of visual inputs, as required for inferences correctly tuned to the statistics of...
Guardado en:
Autores principales: | Dylan Festa, Amir Aschner, Aida Davila, Adam Kohn, Ruben Coen-Cagli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7083391d79ab4a0caefb40917957aeef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modelling the neural code in large populations of correlated neurons
por: Sacha Sokoloski, et al.
Publicado: (2021) -
Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics.
por: Ruben Coen-Cagli, et al.
Publicado: (2012) -
Probabilistic phylogenetic inference with insertions and deletions.
por: Elena Rivas, et al.
Publicado: (2008) -
On the origins of suboptimality in human probabilistic inference.
por: Luigi Acerbi, et al.
Publicado: (2014) -
Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback
por: A. Emin Orhan, et al.
Publicado: (2017)