Generation of High-Precision Ground Penetrating Radar Images Using Improved Least Square Generative Adversarial Networks
Deep learning models have achieved success in image recognition and have shown great potential for interpretation of ground penetrating radar (GPR) data. However, training reliable deep learning models requires massive labeled data, which are usually not easy to obtain due to the high costs of data...
Guardado en:
Autores principales: | Yunpeng Yue, Hai Liu, Xu Meng, Yinguang Li, Yanliang Du |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7085fe613529485290866780cf1640ea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on adaptive clutter suppression for ground penetrating radar based on wavelet transform and K-SVD
por: Xueli WU, et al.
Publicado: (2021) -
Landslide investigations using the geoelectrical scanning method and ground penetrating radar: Case studies
por: Arnaut Filip D., et al.
Publicado: (2021) -
Error analysis of a least squares pseudo-derivative moving least squares method
por: Clack,Jhules, et al.
Publicado: (2017) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
A Comprehensive Evaluation for the Tunnel Conditions with Ground Penetrating Radar Measurements
por: Jordi Mahardika Puntu, et al.
Publicado: (2021)