Effect of deep learning-based assistive technology use on chest radiograph interpretation by emergency department physicians: a prospective interventional simulation-based study
Abstract Background Interpretation of chest radiographs (CRs) by emergency department (ED) physicians is inferior to that by radiologists. Recent studies have investigated the effect of deep learning-based assistive technology on CR interpretation (DLCR), although its relevance to ED physicians rema...
Guardado en:
Autores principales: | Ji Hoon Kim, Sang Gil Han, Ara Cho, Hye Jung Shin, Song-Ee Baek |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/708f74a503d14da78185fd2464308dc7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Yu-Xing Tang, et al.
Publicado: (2020) -
Computer-aided interpretation of chest radiography reveals the spectrum of tuberculosis in rural South Africa
por: Jana Fehr, et al.
Publicado: (2021) -
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV
por: Pranav Rajpurkar, et al.
Publicado: (2020) -
Publisher Correction: Computer-aided interpretation of chest radiography reveals the spectrum of tuberculosis in rural South Africa
por: Jana Fehr, et al.
Publicado: (2021)