Building Polygon Extraction from Aerial Images and Digital Surface Models with a Frame Field Learning Framework
Deep learning-based models for building delineation from remotely sensed images face the challenge of producing precise and regular building outlines. This study investigates the combination of normalized digital surface models (nDSMs) with aerial images to optimize the extraction of building polygo...
Guardado en:
Autores principales: | Xiaoyu Sun, Wufan Zhao, Raian V. Maretto, Claudio Persello |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/70adfefe4fae4471ae85672fb902b7db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sequentially Delineation of Rooftops with Holes from VHR Aerial Images Using a Convolutional Recurrent Neural Network
por: Wei Huang, et al.
Publicado: (2021) -
Ultimate review for the neurology boards
por: Fernandez, Hubert H.
Publicado: (2010) -
SD-Prime cordial labeling of alternate k-polygonal snake of various types
por: Prajapati,U. M., et al.
Publicado: (2021) -
Multi-Scale Warping for Video Frame Interpolation
por: Whan Choi, et al.
Publicado: (2021) -
Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization
por: Nebojsa Bacanin, et al.
Publicado: (2021)