Building Polygon Extraction from Aerial Images and Digital Surface Models with a Frame Field Learning Framework
Deep learning-based models for building delineation from remotely sensed images face the challenge of producing precise and regular building outlines. This study investigates the combination of normalized digital surface models (nDSMs) with aerial images to optimize the extraction of building polygo...
Enregistré dans:
Auteurs principaux: | Xiaoyu Sun, Wufan Zhao, Raian V. Maretto, Claudio Persello |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/70adfefe4fae4471ae85672fb902b7db |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Sequentially Delineation of Rooftops with Holes from VHR Aerial Images Using a Convolutional Recurrent Neural Network
par: Wei Huang, et autres
Publié: (2021) -
Ultimate review for the neurology boards
par: Fernandez, Hubert H.
Publié: (2010) -
SD-Prime cordial labeling of alternate k-polygonal snake of various types
par: Prajapati,U. M., et autres
Publié: (2021) -
Multi-Scale Warping for Video Frame Interpolation
par: Whan Choi, et autres
Publié: (2021) -
Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization
par: Nebojsa Bacanin, et autres
Publié: (2021)