Coronary artery segmentation under class imbalance using a U-Net based architecture on computed tomography angiography images
Abstract Coronary artery disease is caused primarily by vessel narrowing. Extraction of the coronary artery area from images is the preferred procedure for diagnosing coronary diseases. In this study, a U-Net-based network architecture, 3D Dense-U-Net, was adopted to perform fully automatic segmenta...
Guardado en:
Autores principales: | Li-Syuan Pan, Chia-Wei Li, Shun-Feng Su, Shee-Yen Tay, Quoc-Viet Tran, Wing P. Chan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/70b534d4126a415188dd85fb35fd5adf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
por: Kritika Iyer, et al.
Publicado: (2021) -
Voxel-Wise Adversarial FiboNet for 3D Cerebrovascular Segmentation on Magnetic Resonance Angiography Images
por: Bin Guo, et al.
Publicado: (2021) -
Automatic detect lung node with deep learning in segmentation and imbalance data labeling
por: Ting-Wei Chiu, et al.
Publicado: (2021) -
Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture
por: Anuja Arora, et al.
Publicado: (2021) -
Use of Coronary CT Angiography to Predict Obstructive Lesions in Patients with Chest Pain without Enzyme and ST-Segment Elevation
por: June-sung Kim, et al.
Publicado: (2021)