Generation and evaluation of artificial mental health records for Natural Language Processing
Abstract A serious obstacle to the development of Natural Language Processing (NLP) methods in the clinical domain is the accessibility of textual data. The mental health domain is particularly challenging, partly because clinical documentation relies heavily on free text that is difficult to de-ide...
Guardado en:
Autores principales: | Julia Ive, Natalia Viani, Joyce Kam, Lucia Yin, Somain Verma, Stephen Puntis, Rudolf N. Cardinal, Angus Roberts, Robert Stewart, Sumithra Velupillai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/70bae84263554a11a15139b29889876f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial intelligence for the diagnosis of heart failure
por: Dong-Ju Choi, et al.
Publicado: (2020) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
por: Wei Gao, et al.
Publicado: (2021) -
Social media language of healthcare super-utilizers
por: Sharath Chandra Guntuku, et al.
Publicado: (2021) -
Patient apprehensions about the use of artificial intelligence in healthcare
por: Jordan P. Richardson, et al.
Publicado: (2021) -
Developing a delivery science for artificial intelligence in healthcare
por: Ron C. Li, et al.
Publicado: (2020)