Generation and evaluation of artificial mental health records for Natural Language Processing
Abstract A serious obstacle to the development of Natural Language Processing (NLP) methods in the clinical domain is the accessibility of textual data. The mental health domain is particularly challenging, partly because clinical documentation relies heavily on free text that is difficult to de-ide...
Enregistré dans:
Auteurs principaux: | Julia Ive, Natalia Viani, Joyce Kam, Lucia Yin, Somain Verma, Stephen Puntis, Rudolf N. Cardinal, Angus Roberts, Robert Stewart, Sumithra Velupillai |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/70bae84263554a11a15139b29889876f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Artificial intelligence for the diagnosis of heart failure
par: Dong-Ju Choi, et autres
Publié: (2020) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
par: Wei Gao, et autres
Publié: (2021) -
Social media language of healthcare super-utilizers
par: Sharath Chandra Guntuku, et autres
Publié: (2021) -
Patient apprehensions about the use of artificial intelligence in healthcare
par: Jordan P. Richardson, et autres
Publié: (2021) -
Developing a delivery science for artificial intelligence in healthcare
par: Ron C. Li, et autres
Publié: (2020)