Diffusion mechanism in the sodium-ion battery material sodium cobaltate

Abstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: T. J. Willis, D. G. Porter, D. J. Voneshen, S. Uthayakumar, F. Demmel, M. J. Gutmann, M. Roger, K. Refson, J. P. Goff
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/70e5197bca414449acff7ed144a9b660
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:70e5197bca414449acff7ed144a9b660
record_format dspace
spelling oai:doaj.org-article:70e5197bca414449acff7ed144a9b6602021-12-02T15:07:46ZDiffusion mechanism in the sodium-ion battery material sodium cobaltate10.1038/s41598-018-21354-52045-2322https://doaj.org/article/70e5197bca414449acff7ed144a9b6602018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-21354-5https://doaj.org/toc/2045-2322Abstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO2. Here we have determined the diffusion mechanism for Na0.8CoO2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.T. J. WillisD. G. PorterD. J. VoneshenS. UthayakumarF. DemmelM. J. GutmannM. RogerK. RefsonJ. P. GoffNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
T. J. Willis
D. G. Porter
D. J. Voneshen
S. Uthayakumar
F. Demmel
M. J. Gutmann
M. Roger
K. Refson
J. P. Goff
Diffusion mechanism in the sodium-ion battery material sodium cobaltate
description Abstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO2. Here we have determined the diffusion mechanism for Na0.8CoO2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.
format article
author T. J. Willis
D. G. Porter
D. J. Voneshen
S. Uthayakumar
F. Demmel
M. J. Gutmann
M. Roger
K. Refson
J. P. Goff
author_facet T. J. Willis
D. G. Porter
D. J. Voneshen
S. Uthayakumar
F. Demmel
M. J. Gutmann
M. Roger
K. Refson
J. P. Goff
author_sort T. J. Willis
title Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_short Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_full Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_fullStr Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_full_unstemmed Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_sort diffusion mechanism in the sodium-ion battery material sodium cobaltate
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/70e5197bca414449acff7ed144a9b660
work_keys_str_mv AT tjwillis diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT dgporter diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT djvoneshen diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT suthayakumar diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT fdemmel diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT mjgutmann diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT mroger diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT krefson diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT jpgoff diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
_version_ 1718388393677684736