Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia
Abstract Bacteria can adjust their genetic programs via alternative σ factors to face new environmental pressures. Here, we analyzed a unique set of paralogous alternative σ factors, termed σIs, which fine-tune the regulation of one of the most intricate cellulolytic systems in nature, the bacterial...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/70e525dc9c80479facb83eb784752270 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:70e525dc9c80479facb83eb784752270 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:70e525dc9c80479facb83eb7847522702021-12-02T15:08:41ZRegulation of biomass degradation by alternative σ factors in cellulolytic clostridia10.1038/s41598-018-29245-52045-2322https://doaj.org/article/70e525dc9c80479facb83eb7847522702018-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-29245-5https://doaj.org/toc/2045-2322Abstract Bacteria can adjust their genetic programs via alternative σ factors to face new environmental pressures. Here, we analyzed a unique set of paralogous alternative σ factors, termed σIs, which fine-tune the regulation of one of the most intricate cellulolytic systems in nature, the bacterial cellulosome, that is involved in degradation of environmental polysaccharides. We combined bioinformatics with experiments to decipher the regulatory networks of five σIs in Clostridium thermocellum, the epitome of cellulolytic microorganisms, and one σI in Pseudobacteroides cellulosolvens which produces the cellulosomal system with the greatest known complexity. Despite high homology between different σIs, our data suggest limited cross-talk among them. Remarkably, the major cross-talk occurs within the main cellulosomal genes which harbor the same σI-dependent promoter elements, suggesting a promoter-based mechanism to guarantee the expression of relevant genes. Our findings provide insights into the mechanisms used by σIs to differentiate among their corresponding regulons, representing a comprehensive overview of the regulation of the cellulosome to date. Finally, we show the advantage of using a heterologous host system for analysis of multiple σIs, since information generated by their analysis in their natural host can be misinterpreted owing to a cascade of interactions among the different σIs.Lizett Ortiz de OraRaphael LamedYa-Jun LiuJian XuQiu CuiYingang FengYuval ShohamEdward A. BayerIván Muñoz-GutiérrezNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-11 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Lizett Ortiz de Ora Raphael Lamed Ya-Jun Liu Jian Xu Qiu Cui Yingang Feng Yuval Shoham Edward A. Bayer Iván Muñoz-Gutiérrez Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia |
description |
Abstract Bacteria can adjust their genetic programs via alternative σ factors to face new environmental pressures. Here, we analyzed a unique set of paralogous alternative σ factors, termed σIs, which fine-tune the regulation of one of the most intricate cellulolytic systems in nature, the bacterial cellulosome, that is involved in degradation of environmental polysaccharides. We combined bioinformatics with experiments to decipher the regulatory networks of five σIs in Clostridium thermocellum, the epitome of cellulolytic microorganisms, and one σI in Pseudobacteroides cellulosolvens which produces the cellulosomal system with the greatest known complexity. Despite high homology between different σIs, our data suggest limited cross-talk among them. Remarkably, the major cross-talk occurs within the main cellulosomal genes which harbor the same σI-dependent promoter elements, suggesting a promoter-based mechanism to guarantee the expression of relevant genes. Our findings provide insights into the mechanisms used by σIs to differentiate among their corresponding regulons, representing a comprehensive overview of the regulation of the cellulosome to date. Finally, we show the advantage of using a heterologous host system for analysis of multiple σIs, since information generated by their analysis in their natural host can be misinterpreted owing to a cascade of interactions among the different σIs. |
format |
article |
author |
Lizett Ortiz de Ora Raphael Lamed Ya-Jun Liu Jian Xu Qiu Cui Yingang Feng Yuval Shoham Edward A. Bayer Iván Muñoz-Gutiérrez |
author_facet |
Lizett Ortiz de Ora Raphael Lamed Ya-Jun Liu Jian Xu Qiu Cui Yingang Feng Yuval Shoham Edward A. Bayer Iván Muñoz-Gutiérrez |
author_sort |
Lizett Ortiz de Ora |
title |
Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia |
title_short |
Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia |
title_full |
Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia |
title_fullStr |
Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia |
title_full_unstemmed |
Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia |
title_sort |
regulation of biomass degradation by alternative σ factors in cellulolytic clostridia |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/70e525dc9c80479facb83eb784752270 |
work_keys_str_mv |
AT lizettortizdeora regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia AT raphaellamed regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia AT yajunliu regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia AT jianxu regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia AT qiucui regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia AT yingangfeng regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia AT yuvalshoham regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia AT edwardabayer regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia AT ivanmunozgutierrez regulationofbiomassdegradationbyalternativesfactorsincellulolyticclostridia |
_version_ |
1718388065606565888 |