Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
Abstract Acute gastrointestinal bleeding is the most common gastrointestinal cause for hospitalization. For high-risk patients requiring intensive care unit stay, predicting transfusion needs during the first 24 h using dynamic risk assessment may improve resuscitation with red blood cell transfusio...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/70ecc46b9e1640a0ba5d4390d8202c6e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:70ecc46b9e1640a0ba5d4390d8202c6e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:70ecc46b9e1640a0ba5d4390d8202c6e2021-12-02T15:27:06ZNeural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit10.1038/s41598-021-88226-32045-2322https://doaj.org/article/70ecc46b9e1640a0ba5d4390d8202c6e2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88226-3https://doaj.org/toc/2045-2322Abstract Acute gastrointestinal bleeding is the most common gastrointestinal cause for hospitalization. For high-risk patients requiring intensive care unit stay, predicting transfusion needs during the first 24 h using dynamic risk assessment may improve resuscitation with red blood cell transfusion in admitted patients with severe acute gastrointestinal bleeding. A patient cohort admitted for acute gastrointestinal bleeding (N = 2,524) was identified from the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database and separated into training (N = 2,032) and internal validation (N = 492) sets. The external validation patient cohort was identified from the eICU collaborative database of patients admitted for acute gastrointestinal bleeding presenting to large urban hospitals (N = 1,526). 62 demographic, clinical, and laboratory test features were consolidated into 4-h time intervals over the first 24 h from admission. The outcome measure was the transfusion of red blood cells during each 4-h time interval. A long short-term memory (LSTM) model, a type of Recurrent Neural Network, was compared to a regression-based models on time-updated data. The LSTM model performed better than discrete time regression-based models for both internal validation (AUROC 0.81 vs 0.75 vs 0.75; P < 0.001) and external validation (AUROC 0.65 vs 0.56 vs 0.56; P < 0.001). A LSTM model can be used to predict the need for transfusion of packed red blood cells over the first 24 h from admission to help personalize the care of high-risk patients with acute gastrointestinal bleeding.Dennis ShungJessie HuangEgbert CastroJ. Kenneth TayMichael SimonovLoren LaineRamesh BatraSmita KrishnaswamyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dennis Shung Jessie Huang Egbert Castro J. Kenneth Tay Michael Simonov Loren Laine Ramesh Batra Smita Krishnaswamy Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit |
description |
Abstract Acute gastrointestinal bleeding is the most common gastrointestinal cause for hospitalization. For high-risk patients requiring intensive care unit stay, predicting transfusion needs during the first 24 h using dynamic risk assessment may improve resuscitation with red blood cell transfusion in admitted patients with severe acute gastrointestinal bleeding. A patient cohort admitted for acute gastrointestinal bleeding (N = 2,524) was identified from the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database and separated into training (N = 2,032) and internal validation (N = 492) sets. The external validation patient cohort was identified from the eICU collaborative database of patients admitted for acute gastrointestinal bleeding presenting to large urban hospitals (N = 1,526). 62 demographic, clinical, and laboratory test features were consolidated into 4-h time intervals over the first 24 h from admission. The outcome measure was the transfusion of red blood cells during each 4-h time interval. A long short-term memory (LSTM) model, a type of Recurrent Neural Network, was compared to a regression-based models on time-updated data. The LSTM model performed better than discrete time regression-based models for both internal validation (AUROC 0.81 vs 0.75 vs 0.75; P < 0.001) and external validation (AUROC 0.65 vs 0.56 vs 0.56; P < 0.001). A LSTM model can be used to predict the need for transfusion of packed red blood cells over the first 24 h from admission to help personalize the care of high-risk patients with acute gastrointestinal bleeding. |
format |
article |
author |
Dennis Shung Jessie Huang Egbert Castro J. Kenneth Tay Michael Simonov Loren Laine Ramesh Batra Smita Krishnaswamy |
author_facet |
Dennis Shung Jessie Huang Egbert Castro J. Kenneth Tay Michael Simonov Loren Laine Ramesh Batra Smita Krishnaswamy |
author_sort |
Dennis Shung |
title |
Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit |
title_short |
Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit |
title_full |
Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit |
title_fullStr |
Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit |
title_full_unstemmed |
Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit |
title_sort |
neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/70ecc46b9e1640a0ba5d4390d8202c6e |
work_keys_str_mv |
AT dennisshung neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit AT jessiehuang neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit AT egbertcastro neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit AT jkennethtay neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit AT michaelsimonov neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit AT lorenlaine neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit AT rameshbatra neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit AT smitakrishnaswamy neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit |
_version_ |
1718387208944091136 |