Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit

Abstract Acute gastrointestinal bleeding is the most common gastrointestinal cause for hospitalization. For high-risk patients requiring intensive care unit stay, predicting transfusion needs during the first 24 h using dynamic risk assessment may improve resuscitation with red blood cell transfusio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dennis Shung, Jessie Huang, Egbert Castro, J. Kenneth Tay, Michael Simonov, Loren Laine, Ramesh Batra, Smita Krishnaswamy
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/70ecc46b9e1640a0ba5d4390d8202c6e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:70ecc46b9e1640a0ba5d4390d8202c6e
record_format dspace
spelling oai:doaj.org-article:70ecc46b9e1640a0ba5d4390d8202c6e2021-12-02T15:27:06ZNeural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit10.1038/s41598-021-88226-32045-2322https://doaj.org/article/70ecc46b9e1640a0ba5d4390d8202c6e2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88226-3https://doaj.org/toc/2045-2322Abstract Acute gastrointestinal bleeding is the most common gastrointestinal cause for hospitalization. For high-risk patients requiring intensive care unit stay, predicting transfusion needs during the first 24 h using dynamic risk assessment may improve resuscitation with red blood cell transfusion in admitted patients with severe acute gastrointestinal bleeding. A patient cohort admitted for acute gastrointestinal bleeding (N = 2,524) was identified from the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database and separated into training (N = 2,032) and internal validation (N = 492) sets. The external validation patient cohort was identified from the eICU collaborative database of patients admitted for acute gastrointestinal bleeding presenting to large urban hospitals (N = 1,526). 62 demographic, clinical, and laboratory test features were consolidated into 4-h time intervals over the first 24 h from admission. The outcome measure was the transfusion of red blood cells during each 4-h time interval. A long short-term memory (LSTM) model, a type of Recurrent Neural Network, was compared to a regression-based models on time-updated data. The LSTM model performed better than discrete time regression-based models for both internal validation (AUROC 0.81 vs 0.75 vs 0.75; P < 0.001) and external validation (AUROC 0.65 vs 0.56 vs 0.56; P < 0.001). A LSTM model can be used to predict the need for transfusion of packed red blood cells over the first 24 h from admission to help personalize the care of high-risk patients with acute gastrointestinal bleeding.Dennis ShungJessie HuangEgbert CastroJ. Kenneth TayMichael SimonovLoren LaineRamesh BatraSmita KrishnaswamyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Dennis Shung
Jessie Huang
Egbert Castro
J. Kenneth Tay
Michael Simonov
Loren Laine
Ramesh Batra
Smita Krishnaswamy
Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
description Abstract Acute gastrointestinal bleeding is the most common gastrointestinal cause for hospitalization. For high-risk patients requiring intensive care unit stay, predicting transfusion needs during the first 24 h using dynamic risk assessment may improve resuscitation with red blood cell transfusion in admitted patients with severe acute gastrointestinal bleeding. A patient cohort admitted for acute gastrointestinal bleeding (N = 2,524) was identified from the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database and separated into training (N = 2,032) and internal validation (N = 492) sets. The external validation patient cohort was identified from the eICU collaborative database of patients admitted for acute gastrointestinal bleeding presenting to large urban hospitals (N = 1,526). 62 demographic, clinical, and laboratory test features were consolidated into 4-h time intervals over the first 24 h from admission. The outcome measure was the transfusion of red blood cells during each 4-h time interval. A long short-term memory (LSTM) model, a type of Recurrent Neural Network, was compared to a regression-based models on time-updated data. The LSTM model performed better than discrete time regression-based models for both internal validation (AUROC 0.81 vs 0.75 vs 0.75; P < 0.001) and external validation (AUROC 0.65 vs 0.56 vs 0.56; P < 0.001). A LSTM model can be used to predict the need for transfusion of packed red blood cells over the first 24 h from admission to help personalize the care of high-risk patients with acute gastrointestinal bleeding.
format article
author Dennis Shung
Jessie Huang
Egbert Castro
J. Kenneth Tay
Michael Simonov
Loren Laine
Ramesh Batra
Smita Krishnaswamy
author_facet Dennis Shung
Jessie Huang
Egbert Castro
J. Kenneth Tay
Michael Simonov
Loren Laine
Ramesh Batra
Smita Krishnaswamy
author_sort Dennis Shung
title Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
title_short Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
title_full Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
title_fullStr Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
title_full_unstemmed Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
title_sort neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/70ecc46b9e1640a0ba5d4390d8202c6e
work_keys_str_mv AT dennisshung neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit
AT jessiehuang neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit
AT egbertcastro neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit
AT jkennethtay neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit
AT michaelsimonov neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit
AT lorenlaine neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit
AT rameshbatra neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit
AT smitakrishnaswamy neuralnetworkpredictsneedforredbloodcelltransfusionforpatientswithacutegastrointestinalbleedingadmittedtotheintensivecareunit
_version_ 1718387208944091136