Quantum algorithms for topological and geometric analysis of data
Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis.
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/70f1e67b437a4e34a6db16ebd4c0eb3d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis. |
---|