Quantum algorithms for topological and geometric analysis of data

Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Seth Lloyd, Silvano Garnerone, Paolo Zanardi
Format: article
Langue:EN
Publié: Nature Portfolio 2016
Sujets:
Q
Accès en ligne:https://doaj.org/article/70f1e67b437a4e34a6db16ebd4c0eb3d
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis.