Quantum algorithms for topological and geometric analysis of data

Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis.

Guardado en:
Detalles Bibliográficos
Autores principales: Seth Lloyd, Silvano Garnerone, Paolo Zanardi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/70f1e67b437a4e34a6db16ebd4c0eb3d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:70f1e67b437a4e34a6db16ebd4c0eb3d
record_format dspace
spelling oai:doaj.org-article:70f1e67b437a4e34a6db16ebd4c0eb3d2021-12-02T14:39:29ZQuantum algorithms for topological and geometric analysis of data10.1038/ncomms101382041-1723https://doaj.org/article/70f1e67b437a4e34a6db16ebd4c0eb3d2016-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms10138https://doaj.org/toc/2041-1723Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis.Seth LloydSilvano GarneronePaolo ZanardiNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-7 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Seth Lloyd
Silvano Garnerone
Paolo Zanardi
Quantum algorithms for topological and geometric analysis of data
description Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis.
format article
author Seth Lloyd
Silvano Garnerone
Paolo Zanardi
author_facet Seth Lloyd
Silvano Garnerone
Paolo Zanardi
author_sort Seth Lloyd
title Quantum algorithms for topological and geometric analysis of data
title_short Quantum algorithms for topological and geometric analysis of data
title_full Quantum algorithms for topological and geometric analysis of data
title_fullStr Quantum algorithms for topological and geometric analysis of data
title_full_unstemmed Quantum algorithms for topological and geometric analysis of data
title_sort quantum algorithms for topological and geometric analysis of data
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/70f1e67b437a4e34a6db16ebd4c0eb3d
work_keys_str_mv AT sethlloyd quantumalgorithmsfortopologicalandgeometricanalysisofdata
AT silvanogarnerone quantumalgorithmsfortopologicalandgeometricanalysisofdata
AT paolozanardi quantumalgorithmsfortopologicalandgeometricanalysisofdata
_version_ 1718390598757515264