Quantum algorithms for topological and geometric analysis of data
Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis.
Guardado en:
Autores principales: | Seth Lloyd, Silvano Garnerone, Paolo Zanardi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/70f1e67b437a4e34a6db16ebd4c0eb3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantization of geometric phase with integer and fractional topological characterization in a quantum Ising chain with long-range interaction
por: Sujit Sarkar
Publicado: (2018) -
Topological data analysis (TDA) enhances bispectral EEG (BSEEG) algorithm for detection of delirium
por: Takehiko Yamanashi, et al.
Publicado: (2021) -
Geometric quantum discords of interacting qubits in thermal reservoir
por: Zhao Li, et al.
Publicado: (2017) -
Ballistic geometric resistance resonances in a single surface of a topological insulator
por: Hubert Maier, et al.
Publicado: (2017) -
Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge
por: Tamsin Cookson, et al.
Publicado: (2021)