Quantum algorithms for topological and geometric analysis of data
Persistent homology allows identification of topological features in data sets, allowing the efficient extraction of useful information. Here, the authors propose a quantum machine learning algorithm that provides an exponential speed up over known algorithms for topological data analysis.
Enregistré dans:
Auteurs principaux: | Seth Lloyd, Silvano Garnerone, Paolo Zanardi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/70f1e67b437a4e34a6db16ebd4c0eb3d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Quantization of geometric phase with integer and fractional topological characterization in a quantum Ising chain with long-range interaction
par: Sujit Sarkar
Publié: (2018) -
Topological data analysis (TDA) enhances bispectral EEG (BSEEG) algorithm for detection of delirium
par: Takehiko Yamanashi, et autres
Publié: (2021) -
Geometric quantum discords of interacting qubits in thermal reservoir
par: Zhao Li, et autres
Publié: (2017) -
Ballistic geometric resistance resonances in a single surface of a topological insulator
par: Hubert Maier, et autres
Publié: (2017) -
Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge
par: Tamsin Cookson, et autres
Publié: (2021)