Hypersaline sapropels act as hotspots for microbial dark matter
Abstract Present-day terrestrial analogue sites are crucial ground truth proxies for studying life in geochemical conditions close to those assumed to be present on early Earth or inferred to exist on other celestial bodies (e.g. Mars, Europa). Although hypersaline sapropels are border-of-life habit...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/70f2dc1bed9e4b3aabae201bd3e2446b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:70f2dc1bed9e4b3aabae201bd3e2446b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:70f2dc1bed9e4b3aabae201bd3e2446b2021-12-02T12:32:00ZHypersaline sapropels act as hotspots for microbial dark matter10.1038/s41598-017-06232-w2045-2322https://doaj.org/article/70f2dc1bed9e4b3aabae201bd3e2446b2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06232-whttps://doaj.org/toc/2045-2322Abstract Present-day terrestrial analogue sites are crucial ground truth proxies for studying life in geochemical conditions close to those assumed to be present on early Earth or inferred to exist on other celestial bodies (e.g. Mars, Europa). Although hypersaline sapropels are border-of-life habitats with moderate occurrence, their microbiological and physicochemical characterization lags behind. Here, we study the diversity of life under low water activity by describing the prokaryotic communities from two disparate hypersaline sapropels (Transylvanian Basin, Romania) in relation to geochemical milieu and pore water chemistry, while inferring their role in carbon cycling by matching taxa to known taxon-specific biogeochemical functions. The polyphasic approach combined deep coverage SSU rRNA gene amplicon sequencing and bioinformatics with RT-qPCR and physicochemical investigations. We found that sapropels developed an analogous elemental milieu and harbored prokaryotes affiliated with fifty-nine phyla, among which the most abundant were Proteobacteria, Bacteroidetes and Chloroflexi. Containing thirty-two candidate divisions and possibly undocumented prokaryotic lineages, the hypersaline sapropels were found to accommodate one of the most diverse and novel ecosystems reported to date and may contribute to completing the phylogenetic branching of the tree of life.Adrian-Ştefan AndreiAndreea BariczMichael Scott RobesonManuela Raluca PăuşanTudor TămaşCecilia ChiriacEdina SzekeresLucian Barbu-TudoranErika Andrea LeveiCristian ComanMircea PodarHoria Leonard BanciuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Adrian-Ştefan Andrei Andreea Baricz Michael Scott Robeson Manuela Raluca Păuşan Tudor Tămaş Cecilia Chiriac Edina Szekeres Lucian Barbu-Tudoran Erika Andrea Levei Cristian Coman Mircea Podar Horia Leonard Banciu Hypersaline sapropels act as hotspots for microbial dark matter |
description |
Abstract Present-day terrestrial analogue sites are crucial ground truth proxies for studying life in geochemical conditions close to those assumed to be present on early Earth or inferred to exist on other celestial bodies (e.g. Mars, Europa). Although hypersaline sapropels are border-of-life habitats with moderate occurrence, their microbiological and physicochemical characterization lags behind. Here, we study the diversity of life under low water activity by describing the prokaryotic communities from two disparate hypersaline sapropels (Transylvanian Basin, Romania) in relation to geochemical milieu and pore water chemistry, while inferring their role in carbon cycling by matching taxa to known taxon-specific biogeochemical functions. The polyphasic approach combined deep coverage SSU rRNA gene amplicon sequencing and bioinformatics with RT-qPCR and physicochemical investigations. We found that sapropels developed an analogous elemental milieu and harbored prokaryotes affiliated with fifty-nine phyla, among which the most abundant were Proteobacteria, Bacteroidetes and Chloroflexi. Containing thirty-two candidate divisions and possibly undocumented prokaryotic lineages, the hypersaline sapropels were found to accommodate one of the most diverse and novel ecosystems reported to date and may contribute to completing the phylogenetic branching of the tree of life. |
format |
article |
author |
Adrian-Ştefan Andrei Andreea Baricz Michael Scott Robeson Manuela Raluca Păuşan Tudor Tămaş Cecilia Chiriac Edina Szekeres Lucian Barbu-Tudoran Erika Andrea Levei Cristian Coman Mircea Podar Horia Leonard Banciu |
author_facet |
Adrian-Ştefan Andrei Andreea Baricz Michael Scott Robeson Manuela Raluca Păuşan Tudor Tămaş Cecilia Chiriac Edina Szekeres Lucian Barbu-Tudoran Erika Andrea Levei Cristian Coman Mircea Podar Horia Leonard Banciu |
author_sort |
Adrian-Ştefan Andrei |
title |
Hypersaline sapropels act as hotspots for microbial dark matter |
title_short |
Hypersaline sapropels act as hotspots for microbial dark matter |
title_full |
Hypersaline sapropels act as hotspots for microbial dark matter |
title_fullStr |
Hypersaline sapropels act as hotspots for microbial dark matter |
title_full_unstemmed |
Hypersaline sapropels act as hotspots for microbial dark matter |
title_sort |
hypersaline sapropels act as hotspots for microbial dark matter |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/70f2dc1bed9e4b3aabae201bd3e2446b |
work_keys_str_mv |
AT adrianstefanandrei hypersalinesapropelsactashotspotsformicrobialdarkmatter AT andreeabaricz hypersalinesapropelsactashotspotsformicrobialdarkmatter AT michaelscottrobeson hypersalinesapropelsactashotspotsformicrobialdarkmatter AT manuelaralucapausan hypersalinesapropelsactashotspotsformicrobialdarkmatter AT tudortamas hypersalinesapropelsactashotspotsformicrobialdarkmatter AT ceciliachiriac hypersalinesapropelsactashotspotsformicrobialdarkmatter AT edinaszekeres hypersalinesapropelsactashotspotsformicrobialdarkmatter AT lucianbarbutudoran hypersalinesapropelsactashotspotsformicrobialdarkmatter AT erikaandrealevei hypersalinesapropelsactashotspotsformicrobialdarkmatter AT cristiancoman hypersalinesapropelsactashotspotsformicrobialdarkmatter AT mirceapodar hypersalinesapropelsactashotspotsformicrobialdarkmatter AT horialeonardbanciu hypersalinesapropelsactashotspotsformicrobialdarkmatter |
_version_ |
1718394221085327360 |