A nanofabricated, monolithic, path-separated electron interferometer
Abstract Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/71197d48710b417589fb896b6232a5ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:71197d48710b417589fb896b6232a5ff |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:71197d48710b417589fb896b6232a5ff2021-12-02T11:40:43ZA nanofabricated, monolithic, path-separated electron interferometer10.1038/s41598-017-01466-02045-2322https://doaj.org/article/71197d48710b417589fb896b6232a5ff2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01466-0https://doaj.org/toc/2045-2322Abstract Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission electron microscope. The interferometer consists of two 45-nm-thick silicon layers separated by 20 μm. This interferometer is fabricated from a single-crystal silicon cantilever on a transmission electron microscope grid by gallium focused-ion-beam milling. Using this interferometer, we obtain interference fringes in a Mach-Zehnder geometry in an unmodified 200 kV transmission electron microscope. The fringes have a period of 0.32 nm, which corresponds to the [1̄1̄1] lattice planes of silicon, and a maximum contrast of 15%. We use convergent-beam electron diffraction to quantify grating alignment and coherence. This design can potentially be scaled to millimeter-scale, and used in electron holography. It could also be applied to perform fundamental physics experiments, such as interaction-free measurement with electrons.Akshay AgarwalChung-Soo KimRichard HobbsDirk van DyckKarl K. BerggrenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Akshay Agarwal Chung-Soo Kim Richard Hobbs Dirk van Dyck Karl K. Berggren A nanofabricated, monolithic, path-separated electron interferometer |
description |
Abstract Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission electron microscope. The interferometer consists of two 45-nm-thick silicon layers separated by 20 μm. This interferometer is fabricated from a single-crystal silicon cantilever on a transmission electron microscope grid by gallium focused-ion-beam milling. Using this interferometer, we obtain interference fringes in a Mach-Zehnder geometry in an unmodified 200 kV transmission electron microscope. The fringes have a period of 0.32 nm, which corresponds to the [1̄1̄1] lattice planes of silicon, and a maximum contrast of 15%. We use convergent-beam electron diffraction to quantify grating alignment and coherence. This design can potentially be scaled to millimeter-scale, and used in electron holography. It could also be applied to perform fundamental physics experiments, such as interaction-free measurement with electrons. |
format |
article |
author |
Akshay Agarwal Chung-Soo Kim Richard Hobbs Dirk van Dyck Karl K. Berggren |
author_facet |
Akshay Agarwal Chung-Soo Kim Richard Hobbs Dirk van Dyck Karl K. Berggren |
author_sort |
Akshay Agarwal |
title |
A nanofabricated, monolithic, path-separated electron interferometer |
title_short |
A nanofabricated, monolithic, path-separated electron interferometer |
title_full |
A nanofabricated, monolithic, path-separated electron interferometer |
title_fullStr |
A nanofabricated, monolithic, path-separated electron interferometer |
title_full_unstemmed |
A nanofabricated, monolithic, path-separated electron interferometer |
title_sort |
nanofabricated, monolithic, path-separated electron interferometer |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/71197d48710b417589fb896b6232a5ff |
work_keys_str_mv |
AT akshayagarwal ananofabricatedmonolithicpathseparatedelectroninterferometer AT chungsookim ananofabricatedmonolithicpathseparatedelectroninterferometer AT richardhobbs ananofabricatedmonolithicpathseparatedelectroninterferometer AT dirkvandyck ananofabricatedmonolithicpathseparatedelectroninterferometer AT karlkberggren ananofabricatedmonolithicpathseparatedelectroninterferometer AT akshayagarwal nanofabricatedmonolithicpathseparatedelectroninterferometer AT chungsookim nanofabricatedmonolithicpathseparatedelectroninterferometer AT richardhobbs nanofabricatedmonolithicpathseparatedelectroninterferometer AT dirkvandyck nanofabricatedmonolithicpathseparatedelectroninterferometer AT karlkberggren nanofabricatedmonolithicpathseparatedelectroninterferometer |
_version_ |
1718395587495198720 |