A nanofabricated, monolithic, path-separated electron interferometer

Abstract Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Akshay Agarwal, Chung-Soo Kim, Richard Hobbs, Dirk van Dyck, Karl K. Berggren
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/71197d48710b417589fb896b6232a5ff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:71197d48710b417589fb896b6232a5ff
record_format dspace
spelling oai:doaj.org-article:71197d48710b417589fb896b6232a5ff2021-12-02T11:40:43ZA nanofabricated, monolithic, path-separated electron interferometer10.1038/s41598-017-01466-02045-2322https://doaj.org/article/71197d48710b417589fb896b6232a5ff2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01466-0https://doaj.org/toc/2045-2322Abstract Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission electron microscope. The interferometer consists of two 45-nm-thick silicon layers separated by 20 μm. This interferometer is fabricated from a single-crystal silicon cantilever on a transmission electron microscope grid by gallium focused-ion-beam milling. Using this interferometer, we obtain interference fringes in a Mach-Zehnder geometry in an unmodified 200 kV transmission electron microscope. The fringes have a period of 0.32 nm, which corresponds to the [1̄1̄1] lattice planes of silicon, and a maximum contrast of 15%. We use convergent-beam electron diffraction to quantify grating alignment and coherence. This design can potentially be scaled to millimeter-scale, and used in electron holography. It could also be applied to perform fundamental physics experiments, such as interaction-free measurement with electrons.Akshay AgarwalChung-Soo KimRichard HobbsDirk van DyckKarl K. BerggrenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Akshay Agarwal
Chung-Soo Kim
Richard Hobbs
Dirk van Dyck
Karl K. Berggren
A nanofabricated, monolithic, path-separated electron interferometer
description Abstract Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission electron microscope. The interferometer consists of two 45-nm-thick silicon layers separated by 20 μm. This interferometer is fabricated from a single-crystal silicon cantilever on a transmission electron microscope grid by gallium focused-ion-beam milling. Using this interferometer, we obtain interference fringes in a Mach-Zehnder geometry in an unmodified 200 kV transmission electron microscope. The fringes have a period of 0.32 nm, which corresponds to the [1̄1̄1] lattice planes of silicon, and a maximum contrast of 15%. We use convergent-beam electron diffraction to quantify grating alignment and coherence. This design can potentially be scaled to millimeter-scale, and used in electron holography. It could also be applied to perform fundamental physics experiments, such as interaction-free measurement with electrons.
format article
author Akshay Agarwal
Chung-Soo Kim
Richard Hobbs
Dirk van Dyck
Karl K. Berggren
author_facet Akshay Agarwal
Chung-Soo Kim
Richard Hobbs
Dirk van Dyck
Karl K. Berggren
author_sort Akshay Agarwal
title A nanofabricated, monolithic, path-separated electron interferometer
title_short A nanofabricated, monolithic, path-separated electron interferometer
title_full A nanofabricated, monolithic, path-separated electron interferometer
title_fullStr A nanofabricated, monolithic, path-separated electron interferometer
title_full_unstemmed A nanofabricated, monolithic, path-separated electron interferometer
title_sort nanofabricated, monolithic, path-separated electron interferometer
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/71197d48710b417589fb896b6232a5ff
work_keys_str_mv AT akshayagarwal ananofabricatedmonolithicpathseparatedelectroninterferometer
AT chungsookim ananofabricatedmonolithicpathseparatedelectroninterferometer
AT richardhobbs ananofabricatedmonolithicpathseparatedelectroninterferometer
AT dirkvandyck ananofabricatedmonolithicpathseparatedelectroninterferometer
AT karlkberggren ananofabricatedmonolithicpathseparatedelectroninterferometer
AT akshayagarwal nanofabricatedmonolithicpathseparatedelectroninterferometer
AT chungsookim nanofabricatedmonolithicpathseparatedelectroninterferometer
AT richardhobbs nanofabricatedmonolithicpathseparatedelectroninterferometer
AT dirkvandyck nanofabricatedmonolithicpathseparatedelectroninterferometer
AT karlkberggren nanofabricatedmonolithicpathseparatedelectroninterferometer
_version_ 1718395587495198720