The morphological identity of insect dendrites.

Dendrite morphology, a neuron's anatomical fingerprint, is a neuroscientist's asset in unveiling organizational principles in the brain. However, the genetic program encoding the morphological identity of a single dendrite remains a mystery. In order to obtain a formal understanding of den...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hermann Cuntz, Friedrich Forstner, Juergen Haag, Alexander Borst
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2008
Materias:
Acceso en línea:https://doaj.org/article/71230d13b813458789ff83df1817bc53
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Dendrite morphology, a neuron's anatomical fingerprint, is a neuroscientist's asset in unveiling organizational principles in the brain. However, the genetic program encoding the morphological identity of a single dendrite remains a mystery. In order to obtain a formal understanding of dendritic branching, we studied distributions of morphological parameters in a group of four individually identifiable neurons of the fly visual system. We found that parameters relating to the branching topology were similar throughout all cells. Only parameters relating to the area covered by the dendrite were cell type specific. With these areas, artificial dendrites were grown based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy. Although the same branching rule was used for all cells, this yielded dendritic structures virtually indistinguishable from their real counterparts. From these principles we derived a fully-automated model-based neuron reconstruction procedure validating the artificial branching rule. In conclusion, we suggest that the genetic program implementing neuronal branching could be constant in all cells whereas the one responsible for the dendrite spanning field should be cell specific.