Development and Validation of an MRI-Based Nomogram Model for Predicting Disease-Free Survival in Locally Advanced Rectal Cancer Treated With Neoadjuvant Radiotherapy

ObjectivesTo develop a prognostic prediction MRI-based nomogram model for locally advanced rectal cancer (LARC) treated with neoadjuvant therapy.MethodsThis was a retrospective analysis of 233 LARC (MRI-T stage 3-4 (mrT) and/or MRI-N stage 1-2 (mrN), M0) patients who had undergone neoadjuvant radiot...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Silin Chen, Yuan Tang, Ning Li, Jun Jiang, Liming Jiang, Bo Chen, Hui Fang, Shunan Qi, Jing Hao, Ningning Lu, Shulian Wang, Yongwen Song, Yueping Liu, Yexiong Li, Jing Jin
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/712fc030e4994a3cba7b377725e3b750
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:712fc030e4994a3cba7b377725e3b750
record_format dspace
spelling oai:doaj.org-article:712fc030e4994a3cba7b377725e3b7502021-11-15T05:18:31ZDevelopment and Validation of an MRI-Based Nomogram Model for Predicting Disease-Free Survival in Locally Advanced Rectal Cancer Treated With Neoadjuvant Radiotherapy2234-943X10.3389/fonc.2021.784156https://doaj.org/article/712fc030e4994a3cba7b377725e3b7502021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fonc.2021.784156/fullhttps://doaj.org/toc/2234-943XObjectivesTo develop a prognostic prediction MRI-based nomogram model for locally advanced rectal cancer (LARC) treated with neoadjuvant therapy.MethodsThis was a retrospective analysis of 233 LARC (MRI-T stage 3-4 (mrT) and/or MRI-N stage 1-2 (mrN), M0) patients who had undergone neoadjuvant radiotherapy and total mesorectal excision (TME) surgery with baseline MRI and operative pathology assessments at our institution from March 2015 to March 2018. The patients were sequentially allocated to training and validation cohorts at a ratio of 4:3 based on the image examination date. A nomogram model was developed based on the univariate logistic regression analysis and multivariable Cox regression analysis results of the training cohort for disease-free survival (DFS). To evaluate the clinical usefulness of the nomogram, Harrell’s concordance index (C-index), calibration plot, receiver operating characteristic (ROC) curve analysis, and decision curve analysis (DCA) were conducted in both cohorts.ResultsThe median follow-up times were 43.2 months (13.3–61.3 months) and 32.0 months (12.3–39.5 months) in the training and validation cohorts. Multivariate Cox regression analysis identified MRI-detected extramural vascular invasion (mrEMVI), pathological T stage (ypT) and perineural invasion (PNI) as independent predictors. Lymphovascular invasion (LVI) (which almost reached statistical significance in multivariate regression analysis) and three other independent predictors were included in the nomogram model. The nomogram showed the best predictive ability for DFS (C-index: 0.769 (training cohort) and 0.776 (validation cohort)). It had a good 3-year DFS predictive capacity [area under the curve, AUC=0.843 (training cohort) and 0.771 (validation cohort)]. DCA revealed that the use of the nomogram model was associated with benefits for the prediction of 3-year DFS in both cohorts.ConclusionWe developed and validated a novel nomogram model based on MRI factors and pathological factors for predicting DFS in LARC treated with neoadjuvant therapy. This model has good predictive value for prognosis, which could improve the risk stratification and individual treatment of LARC patients.Silin ChenYuan TangNing LiNing LiJun JiangLiming JiangBo ChenHui FangShunan QiJing HaoNingning LuShulian WangYongwen SongYueping LiuYexiong LiJing JinJing JinFrontiers Media S.A.articlerectal neoplasmsneoadjuvant therapymagnetic resonance imagingnomogramsprognosisNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENFrontiers in Oncology, Vol 11 (2021)
institution DOAJ
collection DOAJ
language EN
topic rectal neoplasms
neoadjuvant therapy
magnetic resonance imaging
nomograms
prognosis
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
spellingShingle rectal neoplasms
neoadjuvant therapy
magnetic resonance imaging
nomograms
prognosis
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Silin Chen
Yuan Tang
Ning Li
Ning Li
Jun Jiang
Liming Jiang
Bo Chen
Hui Fang
Shunan Qi
Jing Hao
Ningning Lu
Shulian Wang
Yongwen Song
Yueping Liu
Yexiong Li
Jing Jin
Jing Jin
Development and Validation of an MRI-Based Nomogram Model for Predicting Disease-Free Survival in Locally Advanced Rectal Cancer Treated With Neoadjuvant Radiotherapy
description ObjectivesTo develop a prognostic prediction MRI-based nomogram model for locally advanced rectal cancer (LARC) treated with neoadjuvant therapy.MethodsThis was a retrospective analysis of 233 LARC (MRI-T stage 3-4 (mrT) and/or MRI-N stage 1-2 (mrN), M0) patients who had undergone neoadjuvant radiotherapy and total mesorectal excision (TME) surgery with baseline MRI and operative pathology assessments at our institution from March 2015 to March 2018. The patients were sequentially allocated to training and validation cohorts at a ratio of 4:3 based on the image examination date. A nomogram model was developed based on the univariate logistic regression analysis and multivariable Cox regression analysis results of the training cohort for disease-free survival (DFS). To evaluate the clinical usefulness of the nomogram, Harrell’s concordance index (C-index), calibration plot, receiver operating characteristic (ROC) curve analysis, and decision curve analysis (DCA) were conducted in both cohorts.ResultsThe median follow-up times were 43.2 months (13.3–61.3 months) and 32.0 months (12.3–39.5 months) in the training and validation cohorts. Multivariate Cox regression analysis identified MRI-detected extramural vascular invasion (mrEMVI), pathological T stage (ypT) and perineural invasion (PNI) as independent predictors. Lymphovascular invasion (LVI) (which almost reached statistical significance in multivariate regression analysis) and three other independent predictors were included in the nomogram model. The nomogram showed the best predictive ability for DFS (C-index: 0.769 (training cohort) and 0.776 (validation cohort)). It had a good 3-year DFS predictive capacity [area under the curve, AUC=0.843 (training cohort) and 0.771 (validation cohort)]. DCA revealed that the use of the nomogram model was associated with benefits for the prediction of 3-year DFS in both cohorts.ConclusionWe developed and validated a novel nomogram model based on MRI factors and pathological factors for predicting DFS in LARC treated with neoadjuvant therapy. This model has good predictive value for prognosis, which could improve the risk stratification and individual treatment of LARC patients.
format article
author Silin Chen
Yuan Tang
Ning Li
Ning Li
Jun Jiang
Liming Jiang
Bo Chen
Hui Fang
Shunan Qi
Jing Hao
Ningning Lu
Shulian Wang
Yongwen Song
Yueping Liu
Yexiong Li
Jing Jin
Jing Jin
author_facet Silin Chen
Yuan Tang
Ning Li
Ning Li
Jun Jiang
Liming Jiang
Bo Chen
Hui Fang
Shunan Qi
Jing Hao
Ningning Lu
Shulian Wang
Yongwen Song
Yueping Liu
Yexiong Li
Jing Jin
Jing Jin
author_sort Silin Chen
title Development and Validation of an MRI-Based Nomogram Model for Predicting Disease-Free Survival in Locally Advanced Rectal Cancer Treated With Neoadjuvant Radiotherapy
title_short Development and Validation of an MRI-Based Nomogram Model for Predicting Disease-Free Survival in Locally Advanced Rectal Cancer Treated With Neoadjuvant Radiotherapy
title_full Development and Validation of an MRI-Based Nomogram Model for Predicting Disease-Free Survival in Locally Advanced Rectal Cancer Treated With Neoadjuvant Radiotherapy
title_fullStr Development and Validation of an MRI-Based Nomogram Model for Predicting Disease-Free Survival in Locally Advanced Rectal Cancer Treated With Neoadjuvant Radiotherapy
title_full_unstemmed Development and Validation of an MRI-Based Nomogram Model for Predicting Disease-Free Survival in Locally Advanced Rectal Cancer Treated With Neoadjuvant Radiotherapy
title_sort development and validation of an mri-based nomogram model for predicting disease-free survival in locally advanced rectal cancer treated with neoadjuvant radiotherapy
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/712fc030e4994a3cba7b377725e3b750
work_keys_str_mv AT silinchen developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT yuantang developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT ningli developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT ningli developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT junjiang developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT limingjiang developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT bochen developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT huifang developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT shunanqi developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT jinghao developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT ningninglu developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT shulianwang developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT yongwensong developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT yuepingliu developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT yexiongli developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT jingjin developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
AT jingjin developmentandvalidationofanmribasednomogrammodelforpredictingdiseasefreesurvivalinlocallyadvancedrectalcancertreatedwithneoadjuvantradiotherapy
_version_ 1718428812541165568