Preparation of Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) Heterojunction Nanobelt with Extended Light Response and Enhanced Photocatalytic Performance
Photocatalytic degradation, as an emerging method to control environmental pollution, is considered one of the most promising environmental purification technologies. As Tibet is a region with some of the strongest solar radiation in China and even in the world, it is extremely rich in solar energy...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/713f073515e54fe8b80acee3581c366c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:713f073515e54fe8b80acee3581c366c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:713f073515e54fe8b80acee3581c366c2021-11-25T18:28:56ZPreparation of Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) Heterojunction Nanobelt with Extended Light Response and Enhanced Photocatalytic Performance10.3390/molecules262269871420-3049https://doaj.org/article/713f073515e54fe8b80acee3581c366c2021-11-01T00:00:00Zhttps://www.mdpi.com/1420-3049/26/22/6987https://doaj.org/toc/1420-3049Photocatalytic degradation, as an emerging method to control environmental pollution, is considered one of the most promising environmental purification technologies. As Tibet is a region with some of the strongest solar radiation in China and even in the world, it is extremely rich in solar energy resources, which is ideal for applying photocatalytic technology to its ecological environment protection and governance. In this study, Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanobelts were prepared via a hydrothermal method and converted to TiO<sub>2</sub>∙xH<sub>2</sub>O ion exchange, which was followed by high-temperature calcination to prepare TiO<sub>2</sub>(B) nanobelts (“B” in TiO<sub>2</sub>(B) means “Bronze phase”). A simple in situ method was used to generate Ag<sub>3</sub>PO<sub>4</sub> particles on the surface of the TiO<sub>2</sub> nanobelts to construct a Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) heterojunction composite photocatalyst. By generating Ag<sub>3</sub>PO<sub>4</sub> nanoparticles on the surface of the TiO<sub>2</sub>(B) nanobelts to construct heterojunctions, the light absorption range of the photocatalyst was successfully extended from UV (ultraviolet) to the visible region. Furthermore, the recombination of photogenerated electron–hole pairs in the catalyst was inhibited by the construction of the heterojunctions, thus greatly enhancing its light quantum efficiency. Therefore, the prepared Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) heterojunction composite photocatalyst greatly outperformed the TiO<sub>2</sub>(B) nanobelt in terms of photocatalytic degradation.Yong LiYanfang LiuMingqing ZhangQianyu ZhouXin LiTianlu ChenShifeng WangMDPI AGarticlephotocatalystheterojunctionphotocatalytic degradationTiO<sub>2</sub>(B) nanobeltsOrganic chemistryQD241-441ENMolecules, Vol 26, Iss 6987, p 6987 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
photocatalyst heterojunction photocatalytic degradation TiO<sub>2</sub>(B) nanobelts Organic chemistry QD241-441 |
spellingShingle |
photocatalyst heterojunction photocatalytic degradation TiO<sub>2</sub>(B) nanobelts Organic chemistry QD241-441 Yong Li Yanfang Liu Mingqing Zhang Qianyu Zhou Xin Li Tianlu Chen Shifeng Wang Preparation of Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) Heterojunction Nanobelt with Extended Light Response and Enhanced Photocatalytic Performance |
description |
Photocatalytic degradation, as an emerging method to control environmental pollution, is considered one of the most promising environmental purification technologies. As Tibet is a region with some of the strongest solar radiation in China and even in the world, it is extremely rich in solar energy resources, which is ideal for applying photocatalytic technology to its ecological environment protection and governance. In this study, Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanobelts were prepared via a hydrothermal method and converted to TiO<sub>2</sub>∙xH<sub>2</sub>O ion exchange, which was followed by high-temperature calcination to prepare TiO<sub>2</sub>(B) nanobelts (“B” in TiO<sub>2</sub>(B) means “Bronze phase”). A simple in situ method was used to generate Ag<sub>3</sub>PO<sub>4</sub> particles on the surface of the TiO<sub>2</sub> nanobelts to construct a Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) heterojunction composite photocatalyst. By generating Ag<sub>3</sub>PO<sub>4</sub> nanoparticles on the surface of the TiO<sub>2</sub>(B) nanobelts to construct heterojunctions, the light absorption range of the photocatalyst was successfully extended from UV (ultraviolet) to the visible region. Furthermore, the recombination of photogenerated electron–hole pairs in the catalyst was inhibited by the construction of the heterojunctions, thus greatly enhancing its light quantum efficiency. Therefore, the prepared Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) heterojunction composite photocatalyst greatly outperformed the TiO<sub>2</sub>(B) nanobelt in terms of photocatalytic degradation. |
format |
article |
author |
Yong Li Yanfang Liu Mingqing Zhang Qianyu Zhou Xin Li Tianlu Chen Shifeng Wang |
author_facet |
Yong Li Yanfang Liu Mingqing Zhang Qianyu Zhou Xin Li Tianlu Chen Shifeng Wang |
author_sort |
Yong Li |
title |
Preparation of Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) Heterojunction Nanobelt with Extended Light Response and Enhanced Photocatalytic Performance |
title_short |
Preparation of Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) Heterojunction Nanobelt with Extended Light Response and Enhanced Photocatalytic Performance |
title_full |
Preparation of Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) Heterojunction Nanobelt with Extended Light Response and Enhanced Photocatalytic Performance |
title_fullStr |
Preparation of Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) Heterojunction Nanobelt with Extended Light Response and Enhanced Photocatalytic Performance |
title_full_unstemmed |
Preparation of Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>(B) Heterojunction Nanobelt with Extended Light Response and Enhanced Photocatalytic Performance |
title_sort |
preparation of ag<sub>3</sub>po<sub>4</sub>/tio<sub>2</sub>(b) heterojunction nanobelt with extended light response and enhanced photocatalytic performance |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/713f073515e54fe8b80acee3581c366c |
work_keys_str_mv |
AT yongli preparationofagsub3subposub4subtiosub2subbheterojunctionnanobeltwithextendedlightresponseandenhancedphotocatalyticperformance AT yanfangliu preparationofagsub3subposub4subtiosub2subbheterojunctionnanobeltwithextendedlightresponseandenhancedphotocatalyticperformance AT mingqingzhang preparationofagsub3subposub4subtiosub2subbheterojunctionnanobeltwithextendedlightresponseandenhancedphotocatalyticperformance AT qianyuzhou preparationofagsub3subposub4subtiosub2subbheterojunctionnanobeltwithextendedlightresponseandenhancedphotocatalyticperformance AT xinli preparationofagsub3subposub4subtiosub2subbheterojunctionnanobeltwithextendedlightresponseandenhancedphotocatalyticperformance AT tianluchen preparationofagsub3subposub4subtiosub2subbheterojunctionnanobeltwithextendedlightresponseandenhancedphotocatalyticperformance AT shifengwang preparationofagsub3subposub4subtiosub2subbheterojunctionnanobeltwithextendedlightresponseandenhancedphotocatalyticperformance |
_version_ |
1718411081718693888 |