Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte
Phosphorus-doped hierarchically porous carbon (HPC) is prepared with the assistance of freeze-drying using colloid silica and phytic acid dipotassium salt as a hard template and phosphorus source, respectively. Intensive material characterizations show that the freeze-drying process can effectively...
Guardado en:
| Autores principales: | , , , , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
MDPI AG
2021
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/7142e4ad2e914d1a9febb3b54484984f |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| id |
oai:doaj.org-article:7142e4ad2e914d1a9febb3b54484984f |
|---|---|
| record_format |
dspace |
| spelling |
oai:doaj.org-article:7142e4ad2e914d1a9febb3b54484984f2021-11-25T18:30:13ZEnhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte10.3390/nano111128382079-4991https://doaj.org/article/7142e4ad2e914d1a9febb3b54484984f2021-10-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2838https://doaj.org/toc/2079-4991Phosphorus-doped hierarchically porous carbon (HPC) is prepared with the assistance of freeze-drying using colloid silica and phytic acid dipotassium salt as a hard template and phosphorus source, respectively. Intensive material characterizations show that the freeze-drying process can effectively promote the porosity of HPC. The specific surface area and P content for HPC can reach up to 892 m<sup>2</sup> g<sup>−1</sup> and 2.78 at%, respectively. Electrochemical measurements in aqueous KOH and H<sub>2</sub>SO<sub>4</sub> electrolytes reveal that K<sup>+</sup> of a smaller size can more easily penetrate the inner pores compared with SO<sub>4</sub><sup>2</sup><sup>−</sup>, while the developed microporosity in HPC is conducive to the penetration of SO<sub>4</sub><sup>2−</sup>. Moreover, P-doping leads to a high operation potential of 1.5 V for an HPC-based symmetric supercapacitor, resulting in an enhanced energy density of 16.4 Wh kg<sup>−1</sup>. Our work provides a feasible strategy to prepare P-doped HPC with a low dosage of phosphorus source and a guide to construct a pore structure suitable for aqueous H<sub>2</sub>SO<sub>4</sub> electrolyte.Xiaozhong WuXinping YangWei FengXin WangZhichao MiaoPengfei ZhouJinping ZhaoJin ZhouShuping ZhuoMDPI AGarticlehierarchically porous carbonenergy densitysupercapacitorcurrent densityfreeze-dryingChemistryQD1-999ENNanomaterials, Vol 11, Iss 2838, p 2838 (2021) |
| institution |
DOAJ |
| collection |
DOAJ |
| language |
EN |
| topic |
hierarchically porous carbon energy density supercapacitor current density freeze-drying Chemistry QD1-999 |
| spellingShingle |
hierarchically porous carbon energy density supercapacitor current density freeze-drying Chemistry QD1-999 Xiaozhong Wu Xinping Yang Wei Feng Xin Wang Zhichao Miao Pengfei Zhou Jinping Zhao Jin Zhou Shuping Zhuo Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte |
| description |
Phosphorus-doped hierarchically porous carbon (HPC) is prepared with the assistance of freeze-drying using colloid silica and phytic acid dipotassium salt as a hard template and phosphorus source, respectively. Intensive material characterizations show that the freeze-drying process can effectively promote the porosity of HPC. The specific surface area and P content for HPC can reach up to 892 m<sup>2</sup> g<sup>−1</sup> and 2.78 at%, respectively. Electrochemical measurements in aqueous KOH and H<sub>2</sub>SO<sub>4</sub> electrolytes reveal that K<sup>+</sup> of a smaller size can more easily penetrate the inner pores compared with SO<sub>4</sub><sup>2</sup><sup>−</sup>, while the developed microporosity in HPC is conducive to the penetration of SO<sub>4</sub><sup>2−</sup>. Moreover, P-doping leads to a high operation potential of 1.5 V for an HPC-based symmetric supercapacitor, resulting in an enhanced energy density of 16.4 Wh kg<sup>−1</sup>. Our work provides a feasible strategy to prepare P-doped HPC with a low dosage of phosphorus source and a guide to construct a pore structure suitable for aqueous H<sub>2</sub>SO<sub>4</sub> electrolyte. |
| format |
article |
| author |
Xiaozhong Wu Xinping Yang Wei Feng Xin Wang Zhichao Miao Pengfei Zhou Jinping Zhao Jin Zhou Shuping Zhuo |
| author_facet |
Xiaozhong Wu Xinping Yang Wei Feng Xin Wang Zhichao Miao Pengfei Zhou Jinping Zhao Jin Zhou Shuping Zhuo |
| author_sort |
Xiaozhong Wu |
| title |
Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte |
| title_short |
Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte |
| title_full |
Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte |
| title_fullStr |
Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte |
| title_full_unstemmed |
Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte |
| title_sort |
enhanced energy density for p-doped hierarchically porous carbon-based symmetric supercapacitor with high operation potential in aqueous h<sub>2</sub>so<sub>4</sub> electrolyte |
| publisher |
MDPI AG |
| publishDate |
2021 |
| url |
https://doaj.org/article/7142e4ad2e914d1a9febb3b54484984f |
| work_keys_str_mv |
AT xiaozhongwu enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte AT xinpingyang enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte AT weifeng enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte AT xinwang enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte AT zhichaomiao enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte AT pengfeizhou enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte AT jinpingzhao enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte AT jinzhou enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte AT shupingzhuo enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte |
| _version_ |
1718411081939943424 |