Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte

Phosphorus-doped hierarchically porous carbon (HPC) is prepared with the assistance of freeze-drying using colloid silica and phytic acid dipotassium salt as a hard template and phosphorus source, respectively. Intensive material characterizations show that the freeze-drying process can effectively...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaozhong Wu, Xinping Yang, Wei Feng, Xin Wang, Zhichao Miao, Pengfei Zhou, Jinping Zhao, Jin Zhou, Shuping Zhuo
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/7142e4ad2e914d1a9febb3b54484984f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7142e4ad2e914d1a9febb3b54484984f
record_format dspace
spelling oai:doaj.org-article:7142e4ad2e914d1a9febb3b54484984f2021-11-25T18:30:13ZEnhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte10.3390/nano111128382079-4991https://doaj.org/article/7142e4ad2e914d1a9febb3b54484984f2021-10-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2838https://doaj.org/toc/2079-4991Phosphorus-doped hierarchically porous carbon (HPC) is prepared with the assistance of freeze-drying using colloid silica and phytic acid dipotassium salt as a hard template and phosphorus source, respectively. Intensive material characterizations show that the freeze-drying process can effectively promote the porosity of HPC. The specific surface area and P content for HPC can reach up to 892 m<sup>2</sup> g<sup>−1</sup> and 2.78 at%, respectively. Electrochemical measurements in aqueous KOH and H<sub>2</sub>SO<sub>4</sub> electrolytes reveal that K<sup>+</sup> of a smaller size can more easily penetrate the inner pores compared with SO<sub>4</sub><sup>2</sup><sup>−</sup>, while the developed microporosity in HPC is conducive to the penetration of SO<sub>4</sub><sup>2−</sup>. Moreover, P-doping leads to a high operation potential of 1.5 V for an HPC-based symmetric supercapacitor, resulting in an enhanced energy density of 16.4 Wh kg<sup>−1</sup>. Our work provides a feasible strategy to prepare P-doped HPC with a low dosage of phosphorus source and a guide to construct a pore structure suitable for aqueous H<sub>2</sub>SO<sub>4</sub> electrolyte.Xiaozhong WuXinping YangWei FengXin WangZhichao MiaoPengfei ZhouJinping ZhaoJin ZhouShuping ZhuoMDPI AGarticlehierarchically porous carbonenergy densitysupercapacitorcurrent densityfreeze-dryingChemistryQD1-999ENNanomaterials, Vol 11, Iss 2838, p 2838 (2021)
institution DOAJ
collection DOAJ
language EN
topic hierarchically porous carbon
energy density
supercapacitor
current density
freeze-drying
Chemistry
QD1-999
spellingShingle hierarchically porous carbon
energy density
supercapacitor
current density
freeze-drying
Chemistry
QD1-999
Xiaozhong Wu
Xinping Yang
Wei Feng
Xin Wang
Zhichao Miao
Pengfei Zhou
Jinping Zhao
Jin Zhou
Shuping Zhuo
Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte
description Phosphorus-doped hierarchically porous carbon (HPC) is prepared with the assistance of freeze-drying using colloid silica and phytic acid dipotassium salt as a hard template and phosphorus source, respectively. Intensive material characterizations show that the freeze-drying process can effectively promote the porosity of HPC. The specific surface area and P content for HPC can reach up to 892 m<sup>2</sup> g<sup>−1</sup> and 2.78 at%, respectively. Electrochemical measurements in aqueous KOH and H<sub>2</sub>SO<sub>4</sub> electrolytes reveal that K<sup>+</sup> of a smaller size can more easily penetrate the inner pores compared with SO<sub>4</sub><sup>2</sup><sup>−</sup>, while the developed microporosity in HPC is conducive to the penetration of SO<sub>4</sub><sup>2−</sup>. Moreover, P-doping leads to a high operation potential of 1.5 V for an HPC-based symmetric supercapacitor, resulting in an enhanced energy density of 16.4 Wh kg<sup>−1</sup>. Our work provides a feasible strategy to prepare P-doped HPC with a low dosage of phosphorus source and a guide to construct a pore structure suitable for aqueous H<sub>2</sub>SO<sub>4</sub> electrolyte.
format article
author Xiaozhong Wu
Xinping Yang
Wei Feng
Xin Wang
Zhichao Miao
Pengfei Zhou
Jinping Zhao
Jin Zhou
Shuping Zhuo
author_facet Xiaozhong Wu
Xinping Yang
Wei Feng
Xin Wang
Zhichao Miao
Pengfei Zhou
Jinping Zhao
Jin Zhou
Shuping Zhuo
author_sort Xiaozhong Wu
title Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte
title_short Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte
title_full Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte
title_fullStr Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte
title_full_unstemmed Enhanced Energy Density for P-Doped Hierarchically Porous Carbon-Based Symmetric Supercapacitor with High Operation Potential in Aqueous H<sub>2</sub>SO<sub>4</sub> Electrolyte
title_sort enhanced energy density for p-doped hierarchically porous carbon-based symmetric supercapacitor with high operation potential in aqueous h<sub>2</sub>so<sub>4</sub> electrolyte
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/7142e4ad2e914d1a9febb3b54484984f
work_keys_str_mv AT xiaozhongwu enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
AT xinpingyang enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
AT weifeng enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
AT xinwang enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
AT zhichaomiao enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
AT pengfeizhou enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
AT jinpingzhao enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
AT jinzhou enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
AT shupingzhuo enhancedenergydensityforpdopedhierarchicallyporouscarbonbasedsymmetricsupercapacitorwithhighoperationpotentialinaqueoushsub2subsosub4subelectrolyte
_version_ 1718411081939943424