A wavelet features derived radiomics nomogram for prediction of malignant and benign early-stage lung nodules
Abstract This study was to develop a radiomics nomogram mainly using wavelet features for identifying malignant and benign early-stage lung nodules for high-risk screening. A total of 116 patients with early-stage solitary pulmonary nodules (SPNs) (≤ 3 cm) were divided into a training set (N = 70) a...
Guardado en:
Autores principales: | Rui Jing, Jingtao Wang, Jiangbing Li, Xiaojuan Wang, Baijie Li, Fuzhong Xue, Guangrui Shao, Hao Xue |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7143f612a8de4c4e95084e30d114a941 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Influence of lesion size on shear wave elastography in the diagnosis of benign and malignant thyroid nodules
por: Huizhan Li, et al.
Publicado: (2021) -
Development and Validation of a Radiomics Nomogram for Differentiating Pulmonary Cryptococcosis and Lung Adenocarcinoma in Solitary Pulmonary Solid Nodule
por: Jiabi Zhao, et al.
Publicado: (2021) -
Development and validation of a prognostic nomogram for malignant esophageal fistula based on radiomics and clinical factors
por: Chao Zhu, et al.
Publicado: (2021) -
Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
por: Enhui Lv, et al.
Publicado: (2021) -
Efficacy on radiofrequency ablation according to the types of benign thyroid nodules
por: Jianhua Li, et al.
Publicado: (2021)