LiteSCANet: An Efficient Lightweight Network Based on Spectral and Channel-Wise Attention for Hyperspectral Image Classification
Deep learning (DL) algorithms have been demonstrated to have great potential in hyperspectral image (HSI) classification. However, most DL methods mainly focus on improving classification performance, neglecting the computational cost. In order to broaden the application scenarios of DL-based HSI cl...
Guardado en:
Autores principales: | Su Qiao, Xue-Mei Dong, Jiangtao Peng, Weiwei Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/71468806f9ef491ab9ebcf4065cd60e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
por: Xiaochen Lu, et al.
Publicado: (2021) -
A Hybrid Capsule Network for Hyperspectral Image Classification
por: Massoud Khodadadzadeh, et al.
Publicado: (2021) -
Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
por: Fei Ma, et al.
Publicado: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021)