Cost-Sensitive Self-Paced Learning With Adaptive Regularization for Classification of Image Time Series
The classification of image time series has potential significance in the field of land-cover analysis with the increasing number of remote sensing images. The key problem of the classification of image time series is how to transfer the already available knowledge on the source domain to the target...
Guardado en:
Autores principales: | Hao Li, Jianzhao Li, Yue Zhao, Maoguo Gong, Yujing Zhang, Tongfei Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/714a97b0b02343f59ea68bfbad0a11f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
por: Pablo Gomez, et al.
Publicado: (2021) -
A Two-Scale Method of Sea Ice Classification Using TerraSAR-X ScanSAR Data During Early Freeze-Up
por: Huiying Liu, et al.
Publicado: (2021) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021) -
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
por: Chen Wang, et al.
Publicado: (2021) -
Soil Moisture Active/Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration Revisit: Approach and Performance
por: Jinzheng Peng, et al.
Publicado: (2021)