Cost-Sensitive Self-Paced Learning With Adaptive Regularization for Classification of Image Time Series
The classification of image time series has potential significance in the field of land-cover analysis with the increasing number of remote sensing images. The key problem of the classification of image time series is how to transfer the already available knowledge on the source domain to the target...
Enregistré dans:
Auteurs principaux: | Hao Li, Jianzhao Li, Yue Zhao, Maoguo Gong, Yujing Zhang, Tongfei Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/714a97b0b02343f59ea68bfbad0a11f7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
par: Pablo Gomez, et autres
Publié: (2021) -
A Two-Scale Method of Sea Ice Classification Using TerraSAR-X ScanSAR Data During Early Freeze-Up
par: Huiying Liu, et autres
Publié: (2021) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
par: Bing Liu, et autres
Publié: (2021) -
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
par: Chen Wang, et autres
Publié: (2021) -
Soil Moisture Active/Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration Revisit: Approach and Performance
par: Jinzheng Peng, et autres
Publié: (2021)