Is the Atlantic Ocean driving the recent variability in South Asian dust?

<p>This study investigates the large-scale factors controlling interannual variability in dust aerosols over South Asia during 2001–2018. We use a parameter DA<span class="inline-formula"><sub><i>%</i></sub></span>, which refers to the frequency of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: P. Banerjee, S. K. Satheesh, K. Krishna Moorthy
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/7175e781be0b46cdb48fd809daf496c5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<p>This study investigates the large-scale factors controlling interannual variability in dust aerosols over South Asia during 2001–2018. We use a parameter DA<span class="inline-formula"><sub><i>%</i></sub></span>, which refers to the frequency of days in a year when high dust activity is experienced over a region, as determined by a combination of satellite aerosol optical depth and the Ångström exponent. While a positive sea surface temperature (SST) anomaly in the central Pacific Ocean was important in controlling DA<span class="inline-formula"><sub><i>%</i></sub></span> over South Asia during 2001–2010; in recent years, the North Atlantic Ocean has assumed a dominant role. Specifically, high DA<span class="inline-formula"><sub><i>%</i></sub></span> is associated with warming in the midlatitude and cooling in the subtropical North Atlantic SSTs: the location of the two southern arms of the North Atlantic SST tripole pattern. This shift towards a dominant role of the North Atlantic SST in controlling DA<span class="inline-formula"><sub><i>%</i></sub></span> over South Asia coincides with a recent shift towards a persistently positive phase of the North Atlantic oscillation (NAO) and a resultant positive phase of the springtime SST tripole pattern. Interestingly, there has also been a shift in the relation between the two southern arms of the SST tripole and NAO, which has resulted in weakening of the southwest monsoon circulation over the northern Indian Ocean and strengthening of the dust-carrying westerlies and northerlies in the lower troposphere and mid-troposphere. Simulations with an Earth system model show that the positive phase of the North Atlantic SST tripole pattern is responsible for a 10 % increase in the dust optical depth over South Asia during May–September; with increases as high as 30 % during the month of June. This increase is mainly due to transport by the westerlies at the 800 hPa pressure level, which increases the dust concentration at this pressure level by 20 % on average during May–September and up to 50 % during June.</p>