Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients
Abstract Cone-beam computed tomography (CBCT) integrated with a linear accelerator is widely used to increase the accuracy of radiotherapy and plays an important role in image-guided radiotherapy (IGRT). For comparison with fan-beam computed tomography (FBCT), the image quality of CBCT is indistinct...
Guardado en:
Autores principales: | Hui-Ju Tien, Hsin-Chih Yang, Pei-Wei Shueng, Jyh-Cheng Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/718d6a340dc8497e9f1128a01ff09a5d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid Deblur Net: Deep Non-Uniform Deblurring With Event Camera
por: Limeng Zhang, et al.
Publicado: (2020) -
Circulant preconditioners for mean curvature-based image deblurring problem
por: Shahbaz Ahmad, et al.
Publicado: (2021) -
An improved fast iterative shrinkage thresholding algorithm with an error for image deblurring problem
por: Pattanapong Tianchai
Publicado: (2021) -
A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
por: Zhijun Luo, et al.
Publicado: (2021) -
Concurrent Video Denoising and Deblurring for Dynamic Scenes
por: Efklidis Katsaros, et al.
Publicado: (2021)