Global behavior of Heroin epidemic model with time distributed delay and nonlinear incidence function

In this research, we investigate the global properties of the heroin epidemic model with time distributed delay and nonlinear incidence function. We show that the system has threshold dynamics in terms of R0, and we prove, a Lyapunov function, that for R0<1the drug-free equilibrium is globally as...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Salih Djilali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane, Sunil Kumar
Format: article
Langue:EN
Publié: Elsevier 2021
Sujets:
Accès en ligne:https://doaj.org/article/71bf8a3d3d38410bbb71fa52f0829253
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:In this research, we investigate the global properties of the heroin epidemic model with time distributed delay and nonlinear incidence function. We show that the system has threshold dynamics in terms of R0, and we prove, a Lyapunov function, that for R0<1the drug-free equilibrium is globally asymptotically stable. For R0>1, we give the persistence result of the heroin consumption. We also show the global stability of the endemic equilibrium for R0>1using a suitable Lyapunov function. The mathematical results are illustrated by numerically simulations.