Glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis
Noriyuki Kanzaki,1 Yuta Otsuka,1 Takayuki Izumo,1 Hiroshi Shibata,1 Hideyuki Nagao,2 Keita Ogawara,3 Hiroshi Yamada,3 Seiji Miyazaki,3 Yutaka Nakamura3 1Institute for Health Care Science, Suntory Wellness Ltd, Seika-cho, Soraku-gun, Kyoto, Japan; 2Research Institute of Sports Medical Science, Tokai...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/71c2e638247048c2bf6b73ba7472a140 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:71c2e638247048c2bf6b73ba7472a140 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:71c2e638247048c2bf6b73ba7472a1402021-12-02T01:58:02ZGlucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis1178-1998https://doaj.org/article/71c2e638247048c2bf6b73ba7472a1402016-06-01T00:00:00Zhttps://www.dovepress.com/gglucosamine-containing-supplement-improves-locomotor-functions-i-peer-reviewed-article-CIAhttps://doaj.org/toc/1178-1998Noriyuki Kanzaki,1 Yuta Otsuka,1 Takayuki Izumo,1 Hiroshi Shibata,1 Hideyuki Nagao,2 Keita Ogawara,3 Hiroshi Yamada,3 Seiji Miyazaki,3 Yutaka Nakamura3 1Institute for Health Care Science, Suntory Wellness Ltd, Seika-cho, Soraku-gun, Kyoto, Japan; 2Research Institute of Sports Medical Science, Tokai University, Hiratsuka, Kanagawa, Japan; 3School of Physical Education, Tokai University, Hiratsuka, Kanagawa, Japan Background: Previously, we demonstrated that glucosamine-containing supplementation was effective for improving locomotor functions, especially walking speed. However, the biomechanical mechanism of efficacy has not been elucidated. This study aimed to address this challenge in subjects with knee pain, using a motion capture system. Methods: An open label study was conducted in 30 Japanese subjects with knee pain. The subjects were administered a daily supplement containing 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, 1 mg of proteoglycan, and 5 µg of vitamin D (GCQID). The intervention continued for 16 weeks. Efficacy for locomotor functions involving the knee joint was evaluated mainly using the Japanese Knee Osteoarthritis Measure (JKOM) and the 5-question Geriatric Locomotive Function Scale (GLFS-5). To examine the biomechanical mechanism of efficacy for locomotor functions, motions of subjects in a normal walking state were captured. Gait analysis was conducted and efficacy for gait parameters such as normal walking speed, stride length, cadence, and angle of soles was evaluated. Results: GCQID significantly improved total scores on the JKOM and GLFS-5. In gait analysis, normal walking speed, stride length, and angle of soles at the end of the stance phase were all significantly increased, but cadence did not change significantly during the intervention period. There were significant intercorrelations of changes in normal walking speed, stride length, and angle of soles at the end of the stance phase, and between changes in stride length and total JKOM score. Conclusion: A GCQID supplement may increase walking speed through increased stride length and angle of kicking from the ground during steps, which might be mainly associated with alleviated knee pain. Keywords: locomotive syndrome, GLFS-5, normal walking speed, stride length, toe angleKanzaki NOtsuka YIzumo TShibata HNagao HOgawara KYamada HMiyazaki SNakamura YDove Medical Pressarticlelocomotive syndromeGLFS-5normal walking speedstride lengthtoe angleGeriatricsRC952-954.6ENClinical Interventions in Aging, Vol Volume 11, Pp 835-841 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
locomotive syndrome GLFS-5 normal walking speed stride length toe angle Geriatrics RC952-954.6 |
spellingShingle |
locomotive syndrome GLFS-5 normal walking speed stride length toe angle Geriatrics RC952-954.6 Kanzaki N Otsuka Y Izumo T Shibata H Nagao H Ogawara K Yamada H Miyazaki S Nakamura Y Glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis |
description |
Noriyuki Kanzaki,1 Yuta Otsuka,1 Takayuki Izumo,1 Hiroshi Shibata,1 Hideyuki Nagao,2 Keita Ogawara,3 Hiroshi Yamada,3 Seiji Miyazaki,3 Yutaka Nakamura3 1Institute for Health Care Science, Suntory Wellness Ltd, Seika-cho, Soraku-gun, Kyoto, Japan; 2Research Institute of Sports Medical Science, Tokai University, Hiratsuka, Kanagawa, Japan; 3School of Physical Education, Tokai University, Hiratsuka, Kanagawa, Japan Background: Previously, we demonstrated that glucosamine-containing supplementation was effective for improving locomotor functions, especially walking speed. However, the biomechanical mechanism of efficacy has not been elucidated. This study aimed to address this challenge in subjects with knee pain, using a motion capture system. Methods: An open label study was conducted in 30 Japanese subjects with knee pain. The subjects were administered a daily supplement containing 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, 1 mg of proteoglycan, and 5 µg of vitamin D (GCQID). The intervention continued for 16 weeks. Efficacy for locomotor functions involving the knee joint was evaluated mainly using the Japanese Knee Osteoarthritis Measure (JKOM) and the 5-question Geriatric Locomotive Function Scale (GLFS-5). To examine the biomechanical mechanism of efficacy for locomotor functions, motions of subjects in a normal walking state were captured. Gait analysis was conducted and efficacy for gait parameters such as normal walking speed, stride length, cadence, and angle of soles was evaluated. Results: GCQID significantly improved total scores on the JKOM and GLFS-5. In gait analysis, normal walking speed, stride length, and angle of soles at the end of the stance phase were all significantly increased, but cadence did not change significantly during the intervention period. There were significant intercorrelations of changes in normal walking speed, stride length, and angle of soles at the end of the stance phase, and between changes in stride length and total JKOM score. Conclusion: A GCQID supplement may increase walking speed through increased stride length and angle of kicking from the ground during steps, which might be mainly associated with alleviated knee pain. Keywords: locomotive syndrome, GLFS-5, normal walking speed, stride length, toe angle |
format |
article |
author |
Kanzaki N Otsuka Y Izumo T Shibata H Nagao H Ogawara K Yamada H Miyazaki S Nakamura Y |
author_facet |
Kanzaki N Otsuka Y Izumo T Shibata H Nagao H Ogawara K Yamada H Miyazaki S Nakamura Y |
author_sort |
Kanzaki N |
title |
Glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis |
title_short |
Glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis |
title_full |
Glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis |
title_fullStr |
Glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis |
title_full_unstemmed |
Glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis |
title_sort |
glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis |
publisher |
Dove Medical Press |
publishDate |
2016 |
url |
https://doaj.org/article/71c2e638247048c2bf6b73ba7472a140 |
work_keys_str_mv |
AT kanzakin glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis AT otsukay glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis AT izumot glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis AT shibatah glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis AT nagaoh glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis AT ogawarak glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis AT yamadah glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis AT miyazakis glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis AT nakamuray glucosaminecontainingsupplementimproveslocomotorfunctionsinsubjectswithkneepainndashapilotstudyofgaitanalysis |
_version_ |
1718402783193858048 |