Democratising deep learning for microscopy with ZeroCostDL4Mic

Deep learning methods show great promise for the analysis of microscopy images but there is currently an accessibility barrier to many users. Here the authors report a convenient entry-level deep learning platform that can be used at no cost: ZeroCostDL4Mic.

Guardado en:
Detalles Bibliográficos
Autores principales: Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-Pérez, Pieta K. Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L. Jones, Loïc A. Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/71c9afaf6b9849e787693c838589c312
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:71c9afaf6b9849e787693c838589c312
record_format dspace
spelling oai:doaj.org-article:71c9afaf6b9849e787693c838589c3122021-12-02T14:25:16ZDemocratising deep learning for microscopy with ZeroCostDL4Mic10.1038/s41467-021-22518-02041-1723https://doaj.org/article/71c9afaf6b9849e787693c838589c3122021-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22518-0https://doaj.org/toc/2041-1723Deep learning methods show great promise for the analysis of microscopy images but there is currently an accessibility barrier to many users. Here the authors report a convenient entry-level deep learning platform that can be used at no cost: ZeroCostDL4Mic.Lucas von ChamierRomain F. LaineJohanna JukkalaChristoph SpahnDaniel KrentzelElias NehmeMartina LercheSara Hernández-PérezPieta K. MattilaEleni KarinouSéamus HoldenAhmet Can SolakAlexander KrullTim-Oliver BuchholzMartin L. JonesLoïc A. RoyerChristophe LeterrierYoav ShechtmanFlorian JugMike HeilemannGuillaume JacquemetRicardo HenriquesNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Lucas von Chamier
Romain F. Laine
Johanna Jukkala
Christoph Spahn
Daniel Krentzel
Elias Nehme
Martina Lerche
Sara Hernández-Pérez
Pieta K. Mattila
Eleni Karinou
Séamus Holden
Ahmet Can Solak
Alexander Krull
Tim-Oliver Buchholz
Martin L. Jones
Loïc A. Royer
Christophe Leterrier
Yoav Shechtman
Florian Jug
Mike Heilemann
Guillaume Jacquemet
Ricardo Henriques
Democratising deep learning for microscopy with ZeroCostDL4Mic
description Deep learning methods show great promise for the analysis of microscopy images but there is currently an accessibility barrier to many users. Here the authors report a convenient entry-level deep learning platform that can be used at no cost: ZeroCostDL4Mic.
format article
author Lucas von Chamier
Romain F. Laine
Johanna Jukkala
Christoph Spahn
Daniel Krentzel
Elias Nehme
Martina Lerche
Sara Hernández-Pérez
Pieta K. Mattila
Eleni Karinou
Séamus Holden
Ahmet Can Solak
Alexander Krull
Tim-Oliver Buchholz
Martin L. Jones
Loïc A. Royer
Christophe Leterrier
Yoav Shechtman
Florian Jug
Mike Heilemann
Guillaume Jacquemet
Ricardo Henriques
author_facet Lucas von Chamier
Romain F. Laine
Johanna Jukkala
Christoph Spahn
Daniel Krentzel
Elias Nehme
Martina Lerche
Sara Hernández-Pérez
Pieta K. Mattila
Eleni Karinou
Séamus Holden
Ahmet Can Solak
Alexander Krull
Tim-Oliver Buchholz
Martin L. Jones
Loïc A. Royer
Christophe Leterrier
Yoav Shechtman
Florian Jug
Mike Heilemann
Guillaume Jacquemet
Ricardo Henriques
author_sort Lucas von Chamier
title Democratising deep learning for microscopy with ZeroCostDL4Mic
title_short Democratising deep learning for microscopy with ZeroCostDL4Mic
title_full Democratising deep learning for microscopy with ZeroCostDL4Mic
title_fullStr Democratising deep learning for microscopy with ZeroCostDL4Mic
title_full_unstemmed Democratising deep learning for microscopy with ZeroCostDL4Mic
title_sort democratising deep learning for microscopy with zerocostdl4mic
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/71c9afaf6b9849e787693c838589c312
work_keys_str_mv AT lucasvonchamier democratisingdeeplearningformicroscopywithzerocostdl4mic
AT romainflaine democratisingdeeplearningformicroscopywithzerocostdl4mic
AT johannajukkala democratisingdeeplearningformicroscopywithzerocostdl4mic
AT christophspahn democratisingdeeplearningformicroscopywithzerocostdl4mic
AT danielkrentzel democratisingdeeplearningformicroscopywithzerocostdl4mic
AT eliasnehme democratisingdeeplearningformicroscopywithzerocostdl4mic
AT martinalerche democratisingdeeplearningformicroscopywithzerocostdl4mic
AT sarahernandezperez democratisingdeeplearningformicroscopywithzerocostdl4mic
AT pietakmattila democratisingdeeplearningformicroscopywithzerocostdl4mic
AT elenikarinou democratisingdeeplearningformicroscopywithzerocostdl4mic
AT seamusholden democratisingdeeplearningformicroscopywithzerocostdl4mic
AT ahmetcansolak democratisingdeeplearningformicroscopywithzerocostdl4mic
AT alexanderkrull democratisingdeeplearningformicroscopywithzerocostdl4mic
AT timoliverbuchholz democratisingdeeplearningformicroscopywithzerocostdl4mic
AT martinljones democratisingdeeplearningformicroscopywithzerocostdl4mic
AT loicaroyer democratisingdeeplearningformicroscopywithzerocostdl4mic
AT christopheleterrier democratisingdeeplearningformicroscopywithzerocostdl4mic
AT yoavshechtman democratisingdeeplearningformicroscopywithzerocostdl4mic
AT florianjug democratisingdeeplearningformicroscopywithzerocostdl4mic
AT mikeheilemann democratisingdeeplearningformicroscopywithzerocostdl4mic
AT guillaumejacquemet democratisingdeeplearningformicroscopywithzerocostdl4mic
AT ricardohenriques democratisingdeeplearningformicroscopywithzerocostdl4mic
_version_ 1718391375216508928