Democratising deep learning for microscopy with ZeroCostDL4Mic
Deep learning methods show great promise for the analysis of microscopy images but there is currently an accessibility barrier to many users. Here the authors report a convenient entry-level deep learning platform that can be used at no cost: ZeroCostDL4Mic.
Guardado en:
Autores principales: | Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-Pérez, Pieta K. Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L. Jones, Loïc A. Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/71c9afaf6b9849e787693c838589c312 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Democratising Heritage Values: A Methodological Review
por: Ana Pastor Pérez, et al.
Publicado: (2021) -
Growth of Democratisation in Latin America Along Socialist Lines
por: Amit Mishra
Publicado: (2017) -
Introduction: (De)democratisation in Slovenia and Montenegro: Comparing the Quality of Democracy
por: Komar Olivera, et al.
Publicado: (2020) - Revista d'estudis autono`mics i federals
-
MIRACLE: MIcRo-ArChitectural Leakage Evaluation
por: Ben Marshall, et al.
Publicado: (2021)