Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
Abstract Deep neural networks (‘deep learning’) have emerged as a technology of choice to tackle problems in speech recognition, computer vision, finance, etc. However, adoption of deep learning in physical domains brings substantial challenges stemming from the correlative nature of deep learning m...
Guardado en:
Autores principales: | Rama K. Vasudevan, Maxim Ziatdinov, Lukas Vlcek, Sergei V. Kalinin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/71fb8b9fb2e94aae97f4e00701a335d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Bayesian local crystallography
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
por: Lukas Vlcek, et al.
Publicado: (2021) -
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
por: Mark P. Oxley, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017)