Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
Abstract Deep neural networks (‘deep learning’) have emerged as a technology of choice to tackle problems in speech recognition, computer vision, finance, etc. However, adoption of deep learning in physical domains brings substantial challenges stemming from the correlative nature of deep learning m...
Enregistré dans:
Auteurs principaux: | Rama K. Vasudevan, Maxim Ziatdinov, Lukas Vlcek, Sergei V. Kalinin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/71fb8b9fb2e94aae97f4e00701a335d9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep Bayesian local crystallography
par: Sergei V. Kalinin, et autres
Publié: (2021) -
Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
par: Sergei V. Kalinin, et autres
Publié: (2021) -
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
par: Lukas Vlcek, et autres
Publié: (2021) -
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
par: Mark P. Oxley, et autres
Publié: (2021) -
Learning surface molecular structures via machine vision
par: Maxim Ziatdinov, et autres
Publié: (2017)