Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
Abstract Deep neural networks (‘deep learning’) have emerged as a technology of choice to tackle problems in speech recognition, computer vision, finance, etc. However, adoption of deep learning in physical domains brings substantial challenges stemming from the correlative nature of deep learning m...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/71fb8b9fb2e94aae97f4e00701a335d9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!