Multi-omics subtyping pipeline for chronic obstructive pulmonary disease.
Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of mortality in the United States; however, COPD has heterogeneous clinical phenotypes. This is the first large scale attempt which uses transcriptomics, proteomics, and metabolomics (multi-omics) to determine whether there are...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/720ad2983d46440eb08aaa313bff75a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:720ad2983d46440eb08aaa313bff75a2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:720ad2983d46440eb08aaa313bff75a22021-12-02T20:17:36ZMulti-omics subtyping pipeline for chronic obstructive pulmonary disease.1932-620310.1371/journal.pone.0255337https://doaj.org/article/720ad2983d46440eb08aaa313bff75a22021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0255337https://doaj.org/toc/1932-6203Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of mortality in the United States; however, COPD has heterogeneous clinical phenotypes. This is the first large scale attempt which uses transcriptomics, proteomics, and metabolomics (multi-omics) to determine whether there are molecularly defined clusters with distinct clinical phenotypes that may underlie the clinical heterogeneity. Subjects included 3,278 subjects from the COPDGene cohort with at least one of the following profiles: whole blood transcriptomes (2,650 subjects); plasma proteomes (1,013 subjects); and plasma metabolomes (1,136 subjects). 489 subjects had all three contemporaneous -omics profiles. Autoencoder embeddings were performed individually for each -omics dataset. Embeddings underwent subspace clustering using MineClus, either individually by -omics or combined, followed by recursive feature selection based on Support Vector Machines. Clusters were tested for associations with clinical variables. Optimal single -omics clustering typically resulted in two clusters. Although there was overlap for individual -omics cluster membership, each -omics cluster tended to be defined by unique molecular pathways. For example, prominent molecular features of the metabolome-based clustering included sphingomyelin, while key molecular features of the transcriptome-based clusters were related to immune and bacterial responses. We also found that when we integrated the -omics data at a later stage, we identified subtypes that varied based on age, severity of disease, in addition to diffusing capacity of the lungs for carbon monoxide, and precent on atrial fibrillation. In contrast, when we integrated the -omics data at an earlier stage by treating all data sets equally, there were no clinical differences between subtypes. Similar to clinical clustering, which has revealed multiple heterogenous clinical phenotypes, we show that transcriptomics, proteomics, and metabolomics tend to define clusters of COPD patients with different clinical characteristics. Thus, integrating these different -omics data sets affords additional insight into the molecular nature of COPD and its heterogeneity.Lucas A GillenwaterShahab HelmiEvan SteneKatherine A PratteYonghua ZhuangRonald P SchuylerLeslie LangePeter J CastaldiCraig P HershFarnoush Banaei-KashaniRussell P BowlerKaterina J KechrisPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0255337 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Lucas A Gillenwater Shahab Helmi Evan Stene Katherine A Pratte Yonghua Zhuang Ronald P Schuyler Leslie Lange Peter J Castaldi Craig P Hersh Farnoush Banaei-Kashani Russell P Bowler Katerina J Kechris Multi-omics subtyping pipeline for chronic obstructive pulmonary disease. |
description |
Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of mortality in the United States; however, COPD has heterogeneous clinical phenotypes. This is the first large scale attempt which uses transcriptomics, proteomics, and metabolomics (multi-omics) to determine whether there are molecularly defined clusters with distinct clinical phenotypes that may underlie the clinical heterogeneity. Subjects included 3,278 subjects from the COPDGene cohort with at least one of the following profiles: whole blood transcriptomes (2,650 subjects); plasma proteomes (1,013 subjects); and plasma metabolomes (1,136 subjects). 489 subjects had all three contemporaneous -omics profiles. Autoencoder embeddings were performed individually for each -omics dataset. Embeddings underwent subspace clustering using MineClus, either individually by -omics or combined, followed by recursive feature selection based on Support Vector Machines. Clusters were tested for associations with clinical variables. Optimal single -omics clustering typically resulted in two clusters. Although there was overlap for individual -omics cluster membership, each -omics cluster tended to be defined by unique molecular pathways. For example, prominent molecular features of the metabolome-based clustering included sphingomyelin, while key molecular features of the transcriptome-based clusters were related to immune and bacterial responses. We also found that when we integrated the -omics data at a later stage, we identified subtypes that varied based on age, severity of disease, in addition to diffusing capacity of the lungs for carbon monoxide, and precent on atrial fibrillation. In contrast, when we integrated the -omics data at an earlier stage by treating all data sets equally, there were no clinical differences between subtypes. Similar to clinical clustering, which has revealed multiple heterogenous clinical phenotypes, we show that transcriptomics, proteomics, and metabolomics tend to define clusters of COPD patients with different clinical characteristics. Thus, integrating these different -omics data sets affords additional insight into the molecular nature of COPD and its heterogeneity. |
format |
article |
author |
Lucas A Gillenwater Shahab Helmi Evan Stene Katherine A Pratte Yonghua Zhuang Ronald P Schuyler Leslie Lange Peter J Castaldi Craig P Hersh Farnoush Banaei-Kashani Russell P Bowler Katerina J Kechris |
author_facet |
Lucas A Gillenwater Shahab Helmi Evan Stene Katherine A Pratte Yonghua Zhuang Ronald P Schuyler Leslie Lange Peter J Castaldi Craig P Hersh Farnoush Banaei-Kashani Russell P Bowler Katerina J Kechris |
author_sort |
Lucas A Gillenwater |
title |
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease. |
title_short |
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease. |
title_full |
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease. |
title_fullStr |
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease. |
title_full_unstemmed |
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease. |
title_sort |
multi-omics subtyping pipeline for chronic obstructive pulmonary disease. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/720ad2983d46440eb08aaa313bff75a2 |
work_keys_str_mv |
AT lucasagillenwater multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT shahabhelmi multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT evanstene multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT katherineapratte multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT yonghuazhuang multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT ronaldpschuyler multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT leslielange multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT peterjcastaldi multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT craigphersh multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT farnoushbanaeikashani multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT russellpbowler multiomicssubtypingpipelineforchronicobstructivepulmonarydisease AT katerinajkechris multiomicssubtypingpipelineforchronicobstructivepulmonarydisease |
_version_ |
1718374350587953152 |