Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites

Microbial DNA glycosylases associated with the biosynthesis of DNA-damaging antibiotics have evolved self-resistance for their cognate natural products. Here, the authors provide evidence that cellular self-resistance is enabled by reduced affinity of the glycosylases for the excision products of th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elwood A. Mullins, Jonathan Dorival, Gong-Li Tang, Dale L. Boger, Brandt F. Eichman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/720d0a38f220438cbce58c8a50392b7b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:720d0a38f220438cbce58c8a50392b7b
record_format dspace
spelling oai:doaj.org-article:720d0a38f220438cbce58c8a50392b7b2021-11-28T12:31:29ZStructural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites10.1038/s41467-021-27284-72041-1723https://doaj.org/article/720d0a38f220438cbce58c8a50392b7b2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27284-7https://doaj.org/toc/2041-1723Microbial DNA glycosylases associated with the biosynthesis of DNA-damaging antibiotics have evolved self-resistance for their cognate natural products. Here, the authors provide evidence that cellular self-resistance is enabled by reduced affinity of the glycosylases for the excision products of the corresponding DNA lesions.Elwood A. MullinsJonathan DorivalGong-Li TangDale L. BogerBrandt F. EichmanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Elwood A. Mullins
Jonathan Dorival
Gong-Li Tang
Dale L. Boger
Brandt F. Eichman
Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites
description Microbial DNA glycosylases associated with the biosynthesis of DNA-damaging antibiotics have evolved self-resistance for their cognate natural products. Here, the authors provide evidence that cellular self-resistance is enabled by reduced affinity of the glycosylases for the excision products of the corresponding DNA lesions.
format article
author Elwood A. Mullins
Jonathan Dorival
Gong-Li Tang
Dale L. Boger
Brandt F. Eichman
author_facet Elwood A. Mullins
Jonathan Dorival
Gong-Li Tang
Dale L. Boger
Brandt F. Eichman
author_sort Elwood A. Mullins
title Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites
title_short Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites
title_full Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites
title_fullStr Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites
title_full_unstemmed Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites
title_sort structural evolution of a dna repair self-resistance mechanism targeting genotoxic secondary metabolites
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/720d0a38f220438cbce58c8a50392b7b
work_keys_str_mv AT elwoodamullins structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites
AT jonathandorival structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites
AT gonglitang structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites
AT dalelboger structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites
AT brandtfeichman structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites
_version_ 1718407896895586304