Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites
Microbial DNA glycosylases associated with the biosynthesis of DNA-damaging antibiotics have evolved self-resistance for their cognate natural products. Here, the authors provide evidence that cellular self-resistance is enabled by reduced affinity of the glycosylases for the excision products of th...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/720d0a38f220438cbce58c8a50392b7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:720d0a38f220438cbce58c8a50392b7b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:720d0a38f220438cbce58c8a50392b7b2021-11-28T12:31:29ZStructural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites10.1038/s41467-021-27284-72041-1723https://doaj.org/article/720d0a38f220438cbce58c8a50392b7b2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27284-7https://doaj.org/toc/2041-1723Microbial DNA glycosylases associated with the biosynthesis of DNA-damaging antibiotics have evolved self-resistance for their cognate natural products. Here, the authors provide evidence that cellular self-resistance is enabled by reduced affinity of the glycosylases for the excision products of the corresponding DNA lesions.Elwood A. MullinsJonathan DorivalGong-Li TangDale L. BogerBrandt F. EichmanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Elwood A. Mullins Jonathan Dorival Gong-Li Tang Dale L. Boger Brandt F. Eichman Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites |
description |
Microbial DNA glycosylases associated with the biosynthesis of DNA-damaging antibiotics have evolved self-resistance for their cognate natural products. Here, the authors provide evidence that cellular self-resistance is enabled by reduced affinity of the glycosylases for the excision products of the corresponding DNA lesions. |
format |
article |
author |
Elwood A. Mullins Jonathan Dorival Gong-Li Tang Dale L. Boger Brandt F. Eichman |
author_facet |
Elwood A. Mullins Jonathan Dorival Gong-Li Tang Dale L. Boger Brandt F. Eichman |
author_sort |
Elwood A. Mullins |
title |
Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites |
title_short |
Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites |
title_full |
Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites |
title_fullStr |
Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites |
title_full_unstemmed |
Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites |
title_sort |
structural evolution of a dna repair self-resistance mechanism targeting genotoxic secondary metabolites |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/720d0a38f220438cbce58c8a50392b7b |
work_keys_str_mv |
AT elwoodamullins structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites AT jonathandorival structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites AT gonglitang structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites AT dalelboger structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites AT brandtfeichman structuralevolutionofadnarepairselfresistancemechanismtargetinggenotoxicsecondarymetabolites |
_version_ |
1718407896895586304 |