MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma
MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that negatively regulate gene expression by binding to target mRNAs. Deregulated miRNAs can act as either oncogenic miRNAs or tumor suppressor miRNAs in controlling proliferation, differentiation, apoptosis, metastasis, epithelial–mese...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7213bfb800ac4f36a6d932fffd763348 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7213bfb800ac4f36a6d932fffd763348 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7213bfb800ac4f36a6d932fffd7633482021-11-25T17:01:14ZMicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma10.3390/cancers132256042072-6694https://doaj.org/article/7213bfb800ac4f36a6d932fffd7633482021-11-01T00:00:00Zhttps://www.mdpi.com/2072-6694/13/22/5604https://doaj.org/toc/2072-6694MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that negatively regulate gene expression by binding to target mRNAs. Deregulated miRNAs can act as either oncogenic miRNAs or tumor suppressor miRNAs in controlling proliferation, differentiation, apoptosis, metastasis, epithelial–mesenchymal transition, and immune responses, which are all involved in the carcinogenesis process of HNSCC. Recent findings have shown that metabolic reprogramming is an important hallmark of cancer, which is necessary for malignant transformation and tumor development. Some reprogrammed metabolisms are believed to be required for HNSCC against an unfavorable tumor microenvironment (TME). The TME is composed of various cell types embedded in the altered extracellular matrix, among which exosomes, secreted by cancer cells, are one of the most important factors. Tumor-derived exosomes reshape the tumor microenvironment and play a crucial role in cell-to-cell communication during HNSCC development. Exosomes encapsulate many biomolecules, including miRNAs, circulate in body fluids, and can transmit intercellular regulatory messages to nearby and distant sites, which indicates that exosomal miRNAs have the potential to become non-invasive biomarkers. This review aims to clarify the functions of diverse miRNAs in HNSCC metabolic reprogramming and tumor-derived exosomes. In addition, it also emphasizes the potential role of miRNA as a biomarker in the diagnosis, prognosis, and treatment of HNSCC cancer.Shine-Gwo ShiahSung-Tau ChouJang-Yang ChangMDPI AGarticlemiRNAHNSCCmetabolismexosomestumor microenvironmentNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENCancers, Vol 13, Iss 5604, p 5604 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
miRNA HNSCC metabolism exosomes tumor microenvironment Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 |
spellingShingle |
miRNA HNSCC metabolism exosomes tumor microenvironment Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 Shine-Gwo Shiah Sung-Tau Chou Jang-Yang Chang MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma |
description |
MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that negatively regulate gene expression by binding to target mRNAs. Deregulated miRNAs can act as either oncogenic miRNAs or tumor suppressor miRNAs in controlling proliferation, differentiation, apoptosis, metastasis, epithelial–mesenchymal transition, and immune responses, which are all involved in the carcinogenesis process of HNSCC. Recent findings have shown that metabolic reprogramming is an important hallmark of cancer, which is necessary for malignant transformation and tumor development. Some reprogrammed metabolisms are believed to be required for HNSCC against an unfavorable tumor microenvironment (TME). The TME is composed of various cell types embedded in the altered extracellular matrix, among which exosomes, secreted by cancer cells, are one of the most important factors. Tumor-derived exosomes reshape the tumor microenvironment and play a crucial role in cell-to-cell communication during HNSCC development. Exosomes encapsulate many biomolecules, including miRNAs, circulate in body fluids, and can transmit intercellular regulatory messages to nearby and distant sites, which indicates that exosomal miRNAs have the potential to become non-invasive biomarkers. This review aims to clarify the functions of diverse miRNAs in HNSCC metabolic reprogramming and tumor-derived exosomes. In addition, it also emphasizes the potential role of miRNA as a biomarker in the diagnosis, prognosis, and treatment of HNSCC cancer. |
format |
article |
author |
Shine-Gwo Shiah Sung-Tau Chou Jang-Yang Chang |
author_facet |
Shine-Gwo Shiah Sung-Tau Chou Jang-Yang Chang |
author_sort |
Shine-Gwo Shiah |
title |
MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma |
title_short |
MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma |
title_full |
MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma |
title_fullStr |
MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma |
title_full_unstemmed |
MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma |
title_sort |
micrornas: their role in metabolism, tumor microenvironment, and therapeutic implications in head and neck squamous cell carcinoma |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/7213bfb800ac4f36a6d932fffd763348 |
work_keys_str_mv |
AT shinegwoshiah micrornastheirroleinmetabolismtumormicroenvironmentandtherapeuticimplicationsinheadandnecksquamouscellcarcinoma AT sungtauchou micrornastheirroleinmetabolismtumormicroenvironmentandtherapeuticimplicationsinheadandnecksquamouscellcarcinoma AT jangyangchang micrornastheirroleinmetabolismtumormicroenvironmentandtherapeuticimplicationsinheadandnecksquamouscellcarcinoma |
_version_ |
1718412782578171904 |