Study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate
Nowadays, thin steel plates with high surface quality are required. However, the quality of steel plates is adversely affected by transport using the friction force generated by contact with rollers in the manufacturing process. As a solution to this problem, the non-contact transport of steel plate...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Japan Society of Mechanical Engineers
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7214ca560fad4a7783e81ba61718a7cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7214ca560fad4a7783e81ba61718a7cc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7214ca560fad4a7783e81ba61718a7cc2021-11-26T06:58:33ZStudy on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate2187-974510.1299/mej.15-00376https://doaj.org/article/7214ca560fad4a7783e81ba61718a7cc2016-10-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/3/6/3_15-00376/_pdf/-char/enhttps://doaj.org/toc/2187-9745Nowadays, thin steel plates with high surface quality are required. However, the quality of steel plates is adversely affected by transport using the friction force generated by contact with rollers in the manufacturing process. As a solution to this problem, the non-contact transport of steel plates using an electromagnetic force has been proposed. When a steel plate has sufficient stiffness owing to its material or size, it can be levitated by a levitation system consisting of actuators installed in the vertical direction. On the other hand, it is difficult for very thin steel plates to levitate because of the deflection at locations where an attractive force is not applied. To improve the levitation performance of the conventional magnetic levitation system, we have proposed the addition of an electromagnet to control the horizontal displacement of the steel plate. However, there have been no detailed examinations of by how much the levitation stability of a steel plate is improved by the suppression of deflection. In this study, we obtained the shape of a levitated steel plate by electromagnetic field analysis and deformation analysis and evaluated the obtained shape of the steel plate. Furthermore, a levitation experiment was performed to verify the levitation stability of this system. The results show that the addition of an electromagnet in the horizontal direction is effective for achieving stable levitation.Takayoshi NARITATakeshi KURIHARAHideaki KATOThe Japan Society of Mechanical Engineersarticlemagnetic levitation controlvibration controlthin steel platefinite difference method (fdm)levitation probabilityMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 3, Iss 6, Pp 15-00376-15-00376 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
magnetic levitation control vibration control thin steel plate finite difference method (fdm) levitation probability Mechanical engineering and machinery TJ1-1570 |
spellingShingle |
magnetic levitation control vibration control thin steel plate finite difference method (fdm) levitation probability Mechanical engineering and machinery TJ1-1570 Takayoshi NARITA Takeshi KURIHARA Hideaki KATO Study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate |
description |
Nowadays, thin steel plates with high surface quality are required. However, the quality of steel plates is adversely affected by transport using the friction force generated by contact with rollers in the manufacturing process. As a solution to this problem, the non-contact transport of steel plates using an electromagnetic force has been proposed. When a steel plate has sufficient stiffness owing to its material or size, it can be levitated by a levitation system consisting of actuators installed in the vertical direction. On the other hand, it is difficult for very thin steel plates to levitate because of the deflection at locations where an attractive force is not applied. To improve the levitation performance of the conventional magnetic levitation system, we have proposed the addition of an electromagnet to control the horizontal displacement of the steel plate. However, there have been no detailed examinations of by how much the levitation stability of a steel plate is improved by the suppression of deflection. In this study, we obtained the shape of a levitated steel plate by electromagnetic field analysis and deformation analysis and evaluated the obtained shape of the steel plate. Furthermore, a levitation experiment was performed to verify the levitation stability of this system. The results show that the addition of an electromagnet in the horizontal direction is effective for achieving stable levitation. |
format |
article |
author |
Takayoshi NARITA Takeshi KURIHARA Hideaki KATO |
author_facet |
Takayoshi NARITA Takeshi KURIHARA Hideaki KATO |
author_sort |
Takayoshi NARITA |
title |
Study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate |
title_short |
Study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate |
title_full |
Study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate |
title_fullStr |
Study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate |
title_full_unstemmed |
Study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate |
title_sort |
study on stability improvement by applying electromagnetic force to edge of non-contact-gripped thin steel plate |
publisher |
The Japan Society of Mechanical Engineers |
publishDate |
2016 |
url |
https://doaj.org/article/7214ca560fad4a7783e81ba61718a7cc |
work_keys_str_mv |
AT takayoshinarita studyonstabilityimprovementbyapplyingelectromagneticforcetoedgeofnoncontactgrippedthinsteelplate AT takeshikurihara studyonstabilityimprovementbyapplyingelectromagneticforcetoedgeofnoncontactgrippedthinsteelplate AT hideakikato studyonstabilityimprovementbyapplyingelectromagneticforcetoedgeofnoncontactgrippedthinsteelplate |
_version_ |
1718409724716646400 |