Poly(imidazolium) Carbosilane Dendrimers: Synthesis, Catalytic Activity in Redox Esterification of α,β-Unsaturated Aldehydes and Recycling via Organic Solvent Nanofiltration

Three series of poly(ionic) carbosilane dendrimers peripherally functionalized with imidazolium groups substituted on N-3 with methyl, isopropyl and 2,6-diisopropylphenyl (Dipp) were prepared up to the 3rd generation together with model monovalent imidazolium iodides and used as N-heterocyclic carbe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alena Krupková, Klára Kubátová, Lucie Červenková Šťastná, Petra Cuřínová, Monika Müllerová, Jindřich Karban, Jan Čermák, Tomáš Strašák
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/72162f35f7004cc1ade5afba5c9b2fb2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Three series of poly(ionic) carbosilane dendrimers peripherally functionalized with imidazolium groups substituted on N-3 with methyl, isopropyl and 2,6-diisopropylphenyl (Dipp) were prepared up to the 3rd generation together with model monovalent imidazolium iodides and used as N-heterocyclic carbene (NHC) precursors. Catalytic activity of model and dendritic NHCs generated in situ by deprotonation with DBU was tested in redox esterification of α,β-unsaturated aldehydes and the influence of substitution, dendrimer generation, temperature and substrate structure on the reaction outcome was evaluated. Dipp substituted NHCs showed high activity and selectivity in the reaction with primary alcohols. Effectiveness of organic solvent nanofiltration for the recycling of dendritic NHCs was demonstrated on the 1st generation Dipp substituted catalyst in model redox esterification of cinnamaldehyde with benzyl alcohol. A marked increase in both activity and selectivity in the first four reaction runs was observed and this improved performance was preserved in the following catalytic cycles.