GIS-BASED RAPID EARTHQUAKE EXPOSURE AND VULNERABILITY MAPPING USING LIDAR DEM AND MACHINE LEARNING ALGORITHMS: CASE OF PORAC, PAMPANGA

Disaster risk reduction and management (DRRM) not only requires a thorough understanding of hazards but also knowledge of how much built-up structures are exposed and vulnerable to a specific hazard. This study proposed a rapid earthquake exposure and vulnerability mapping methodology using the muni...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. J. D. De Los Santos, J. A. Principe
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
T
Acceso en línea:https://doaj.org/article/722e370d15944c4b88bf6f63bf54de3f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Disaster risk reduction and management (DRRM) not only requires a thorough understanding of hazards but also knowledge of how much built-up structures are exposed and vulnerable to a specific hazard. This study proposed a rapid earthquake exposure and vulnerability mapping methodology using the municipality of Porac, Pampanaga as a case study. To address the challenges and limitations of data access and availability in DRRM operations, this study utilized Light Detection and Ranging (LiDAR) data and machine learning (ML) algorithms to produce an exposure database and conduct vulnerability estimation in the study area. Buildings were delineated through image thresholding and classification of the normalized Digital Surface Model (nDSM) and an exposure database containing building attributes was created using Geographic Information System (GIS). ML algorithms such as Support Vector Machine (SVM), logistic regression, and Random Forest (RF) were then used to predict the model building type (MBT) of delineated buildings to estimate seismic vulnerability. Results showed that the SVM model yielded the lowest accuracy (53%) while logistic regression and RF models performed fairly (72% and 78% respectively) as indicated by their F-1 scores. To improve the accuracy of the exposure database and vulnerability estimation, this study recommends that the proposed building delineation process be further refined by experimenting with more appropriate thresholds or by conducting point cloud classification instead of pixel-based image classification. Moreover, ground truth MBT samples should be used as training data for MBT prediction. For future work, the methodology proposed in this study can be implemented when conducting earthquake damage assessments.