Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil

Paruvathanahalli Siddalingam Rajinikanth,1,2 Jestin Chellian2 1School of Pharmacy, Taylors University, 2School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia Abstract: The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rajinikanth PS, Chellian J
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/723e6184da98422b8ef93c6cedba87ef
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Paruvathanahalli Siddalingam Rajinikanth,1,2 Jestin Chellian2 1School of Pharmacy, Taylors University, 2School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia Abstract: The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol® ATO 5 (glyceryl palmitostearate) and Labrasol® were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol® HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol® 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 µg/cm2/h) as compared with plain 5-FU gel (2.85±1.12 µg/cm2/h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 µg/cm2) as compared with that from the 5-FU plain gel (12.23±3.86 µg/cm2) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations. Keywords: nanostructured lipid carrier, topical delivery, controlled release, 5-fluorouracil, skin penetration, skin infection