A deep neural network based method for magnetic anomaly detection
Abstract Magnetic anomaly detection (MAD) is a technique to find ferromagnets hiding in strong and complicated magnetic background. In many practical cases, the targets are very far from the detection sensor, which leads to low signal‐to‐noise ratio (SNR) and high detection difficulty. Most of the c...
Guardado en:
Autores principales: | Yizhen Wang, Qi Han, Guanyi Zhao, Minghui Li, Dechen Zhan, Qiong Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7246da67cecb4c0ca705c2e666166f08 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Approach to Detect Anomaly in Video Using Deep Generative Network
por: Savath Saypadith, et al.
Publicado: (2021) -
PotNet: Pothole detection for autonomous vehicle system using convolutional neural network
por: Deepak Kumar Dewangan, et al.
Publicado: (2021) -
Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
por: Robson V. Mendonca, et al.
Publicado: (2021) -
Machine Learning in Network Anomaly Detection: A Survey
por: Song Wang, et al.
Publicado: (2021) -
Synthetic aperture radar image change detection based on convolutional‐curvelet neural network and partial graph‐cut
por: Meng Jia, et al.
Publicado: (2021)