SAP-Net: Deep learning to predict sound absorption performance of metaporous materials
Airborne sound absorption coefficient is the premise for investigating the sound absorption performance or mechanism of metaporous materials. The common numerical evaluation approach is FEM which is relatively computationally costly particularly when processing complex structures or a large batch of...
Guardado en:
Autores principales: | Hongjia Zhang, Yang Wang, Keyu Lu, Honggang Zhao, Dianlong Yu, Jihong Wen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72781e6ab04d40d79fcc56046e85e2e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Potensi Limbah Ampas Teh sebagai Alternatif Material Akustik Ramah Lingkungan
por: Ukhti Mutia Munifatuzzahroh, et al.
Publicado: (2021) -
Investigation on the acoustic properties of structural gradient 316L stainless steel hollow spheres composites
por: Wang Chunhe, et al.
Publicado: (2021) -
StressNet - Deep learning to predict stress with fracture propagation in brittle materials
por: Yinan Wang, et al.
Publicado: (2021) -
Investigation of the sound absorption properties of gypsum particleboard
produced with kenaf stalks and nano clay
por: Hossein Rangavar, et al.
Publicado: (2014) -
Crack properties, toughness and absorption evaluation of FRCC incorporating reclaimed asphalt pavement and crumb rubber as aggregates
por: Adeyemi Adesina, et al.
Publicado: (2021)