Association of NOS2A gene polymorphisms with susceptibility to bovine tuberculosis in Chinese Holstein cattle.

Bovine tuberculosis (bTB) is a global zoonotic disease that has detrimental economic impacts worldwide. The NOS2A gene plays a key role in immunological control of many infectious diseases. However, research on the association between NOS2A polymorphisms and bTB infection in Holstein cattle reared o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jun Chai, Qinglu Wang, Bo Qin, Shengkui Wang, Youtao Wang, Muhammad Shahid, Kai Liu, Yifang Zhang, Weijie Qu
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/727908c277934043871348cc0638eced
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Bovine tuberculosis (bTB) is a global zoonotic disease that has detrimental economic impacts worldwide. The NOS2A gene plays a key role in immunological control of many infectious diseases. However, research on the association between NOS2A polymorphisms and bTB infection in Holstein cattle reared on the Yunnan-Guizhou plateau of China is scarce. This study investigated a possible linkage between NOS2A polymorphisms and risk of developing bTB in Chinese Holstein cattle. The NOS2A gene was genotyped in 144 bTB-infected Holstein cows and 139 healthy controls were genotyped through nucleotide sequencing. Ten single-nucleotide polymorphisms (SNPs) were detected, six of which were associated with susceptibility/resistance patterns of bTB. Furthermore, the C/T genotypes of 671 and 2793, and T/T genotype of E22 (+15) were significantly associated with susceptibility risk; the G/A genotype of 2857, T/T genotype of E9 (+65), and C/C genotype of E9 (+114) probably increased resistance to bTB. In addition, the haplotypes of NOS2A-2 and NOS2A-9 were risk factors for bTB susceptibility, while the NOS2A-5 and NOS2A-8 haplotypes were contributing protective variants against tuberculosis. There is a significant association between variation in SNPs of NOS2A and tuberculosis susceptibility/resistance pattern. These findings suggest that substitution of genetic selection would be helpful for eradicating bTB. However, further investigation is required to study the underlying mechanism through which NOS2A polymorphisms affect bTB infection.