A Single Chromosome Unexpectedly Links Highly Divergent Isolates of <named-content content-type="genus-species">Toxoplasma gondii</named-content>

ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that can cause disease in all warm-blooded animals studied to date, including humans. Over a billion people have been infected with this parasite worldwide. In Europe and North America, Toxoplasma has a clonal population structure, whe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Katelyn A. Walzer, Jon P. Boyle
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2012
Materias:
Acceso en línea:https://doaj.org/article/727d306826e14af6bdc028050e30671d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that can cause disease in all warm-blooded animals studied to date, including humans. Over a billion people have been infected with this parasite worldwide. In Europe and North America, Toxoplasma has a clonal population structure, where only three lineages are highly dominant (strain types I, II, and III). Khan et al. [mBio 2(6): e00228-11, 2011] have carried out phylogenetic analyses on a large number of diverse strains from outside of these lineages and found evidence for a significant split between the clonal North American/European lineages and those in South America. In contrast to most of the genome, nearly all North American/European strains sampled, and the majority of South American strains sampled, harbored at least portions of a monomorphic chromosome Ia (Ia*). In contrast to previous models, these data suggest that the monomorphic haplotype originated in South America and migrated to the North. These authors propose that South American haplotype 12 was a precursor to modern-day type II, while South American haplotypes 6 and 9 crossed with haplotype 12 to give rise to the type I and III lineages, respectively. However, the findings reported by Khan et al. complicate the origin of chromosome Ia, since there are members of haplotypes 9 and 12 with nearly complete versions of Ia* and members of haplotypes 6 and 12 with over 50% of Ia*. This unexpected finding raises exciting new questions about how an entire common chromosome can be found within strains that are highly divergent at most other genomic loci.