New Sequential and Parallel Support Vector Machine with Grey Wolf Optimizer for Breast Cancer Diagnosis
Breast cancer is one of the most common types of cancer worldwide. Early detection of cancer increases the probability of recovery. This work has three contributions. The first contribution is improving the performance of support vector machine (SVM) using a recent grey wolf optimizer (GWO) for diag...
Guardado en:
Autores principales: | Elsayed Badr, Sultan Almotairi, Mustafa Abdul Salam, Hagar Ahmed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72818dbc2ee64dce88fd98b4395e2633 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting Di-2-Ethylhexyl Phthalate Toxicity: Hybrid Integrated Harris Hawks Optimization With Support Vector Machines
por: Beibei Shi, et al.
Publicado: (2020) -
GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
por: Xingkun He, et al.
Publicado: (2021) -
Parameter estimation of Muskingum model using grey wolf optimizer algorithm
por: Reyhaneh Akbari, et al.
Publicado: (2021) -
Towards design of compound channels with minimum overall cost through grey wolf optimization algorithm
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Design and analysis of quantum powered support vector machines for malignant breast cancer diagnosis
por: Vashisth Shubham, et al.
Publicado: (2021)