Cortical population activity within a preserved neural manifold underlies multiple motor behaviors
Motor cortical neurons enable performance of a wide range of movements. Here, the authors report that dominant population activity patterns, the neural modes, are largely preserved across various tasks, with many displaying consistent temporal dynamics and reliably mapping onto muscle activity.
Guardado en:
Autores principales: | Juan A. Gallego, Matthew G. Perich, Stephanie N. Naufel, Christian Ethier, Sara A. Solla, Lee E. Miller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/728e1e852d1e4bf5bb96ee8cbf1acc76 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Separability and geometry of object manifolds in deep neural networks
por: Uri Cohen, et al.
Publicado: (2020) -
Slow manifolds within network dynamics encode working memory efficiently and robustly.
por: Elham Ghazizadeh, et al.
Publicado: (2021) -
Bypassing use-dependent plasticity in the primary motor cortex to preserve adaptive behavior
por: M. Bosc, et al.
Publicado: (2021) -
Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model
por: Sebastian Goldt, et al.
Publicado: (2020) -
Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior
por: Hamidreza Abbaspourazad, et al.
Publicado: (2021)