Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
Abstract Type 2 diabetes mellitus (T2D) prevalence in the United States varies substantially across spatial and temporal scales, attributable to variations of socioeconomic and lifestyle risk factors. Understanding these variations in risk factors contributions to T2D would be of great benefit to in...
Enregistré dans:
Auteurs principaux: | Sarah Quiñones, Aditya Goyal, Zia U. Ahmed |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7296c6c712a34bb798f57123edb103be |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
par: Sarah Quiñones, et autres
Publié: (2021) -
Spatial prediction of flood-prone areas using geographically weighted regression
par: Jia Min Lin, et autres
Publié: (2021) -
Spatial distribution and geographical heterogeneity factors associated with poor consumption of foods rich in vitamin A among children age 6-23 months in Ethiopia: Geographical weighted regression analysis.
par: Sofonyas Abebaw Tiruneh, et autres
Publié: (2021) -
Identifying Surface Urban Heat Island Drivers and Their Spatial Heterogeneity in China’s 281 Cities: An Empirical Study Based on Multiscale Geographically Weighted Regression
par: Lu Niu, et autres
Publié: (2021) -
Untangling the evolutionary roots of lung cancer
par: Siddhartha Devarakonda, et autres
Publié: (2019)