Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
Abstract Type 2 diabetes mellitus (T2D) prevalence in the United States varies substantially across spatial and temporal scales, attributable to variations of socioeconomic and lifestyle risk factors. Understanding these variations in risk factors contributions to T2D would be of great benefit to in...
Guardado en:
Autores principales: | Sarah Quiñones, Aditya Goyal, Zia U. Ahmed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7296c6c712a34bb798f57123edb103be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
por: Sarah Quiñones, et al.
Publicado: (2021) -
Spatial prediction of flood-prone areas using geographically weighted regression
por: Jia Min Lin, et al.
Publicado: (2021) -
Spatial distribution and geographical heterogeneity factors associated with poor consumption of foods rich in vitamin A among children age 6-23 months in Ethiopia: Geographical weighted regression analysis.
por: Sofonyas Abebaw Tiruneh, et al.
Publicado: (2021) -
Identifying Surface Urban Heat Island Drivers and Their Spatial Heterogeneity in China’s 281 Cities: An Empirical Study Based on Multiscale Geographically Weighted Regression
por: Lu Niu, et al.
Publicado: (2021) -
Untangling the evolutionary roots of lung cancer
por: Siddhartha Devarakonda, et al.
Publicado: (2019)