Multiscale Aggregate Networks with Dense Connections for Crowd Counting
The most advanced method for crowd counting uses a fully convolutional network that extracts image features and then generates a crowd density map. However, this process often encounters multiscale and contextual loss problems. To address these problems, we propose a multiscale aggregation network (...
Guardado en:
Autores principales: | Pengfei Li, Min Zhang, Jian Wan, Ming Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/729f4a27483344b281121e3c1524c85f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Low-count whole-body PET with deep learning in a multicenter and externally validated study
por: Akshay S. Chaudhari, et al.
Publicado: (2021) -
Author Correction: Low-count whole-body PET with deep learning in a multicenter and externally validated study
por: Akshay S. Chaudhari, et al.
Publicado: (2021) -
Quantifying the use of connected digital products in clinical research
por: Caroline Marra, et al.
Publicado: (2020) -
Modernizing and designing evaluation frameworks for connected sensor technologies in medicine
por: Andrea Coravos, et al.
Publicado: (2020) -
Aggregating multiple real-world data sources using a patient-centered health-data-sharing platform
por: Sanket S. Dhruva, et al.
Publicado: (2020)