Magnetic ground state of SrRuO3 thin film and applicability of standard first-principles approximations to metallic magnetism

Abstract A systematic first-principles study has been performed to understand the magnetism of thin film SrRuO3 which lots of research efforts have been devoted to but no clear consensus has been reached about its ground state properties. The relative t 2g level difference, lattice distortion as wel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siheon Ryee, Myung Joon Han
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/72ab235ce4ff4d1c9f69a6e89cd0e8bf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A systematic first-principles study has been performed to understand the magnetism of thin film SrRuO3 which lots of research efforts have been devoted to but no clear consensus has been reached about its ground state properties. The relative t 2g level difference, lattice distortion as well as the layer thickness play together in determining the spin order. In particular, it is important to understand the difference between two standard approximations, namely LDA and GGA, in describing this metallic magnetism. Landau free energy analysis and the magnetization-energy-ratio plot clearly show the different tendency of favoring the magnetic moment formation, and it is magnified when applied to the thin film limit where the experimental information is severely limited. As a result, LDA gives a qualitatively different prediction from GGA in the experimentally relevant region of strain whereas both approximations give reasonable results for the bulk phase. We discuss the origin of this difference and the applicability of standard methods to the correlated oxide and the metallic magnetic systems.